論文の概要: DuetFace: Collaborative Privacy-Preserving Face Recognition via Channel
Splitting in the Frequency Domain
- arxiv url: http://arxiv.org/abs/2207.07340v1
- Date: Fri, 15 Jul 2022 08:35:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-18 20:29:07.282361
- Title: DuetFace: Collaborative Privacy-Preserving Face Recognition via Channel
Splitting in the Frequency Domain
- Title(参考訳): duetface: 周波数領域におけるチャネル分割によるプライバシー保護型顔認識
- Authors: Yuxi Mi, Yuge Huang, Jiazhen Ji, Hongquan Liu, Xingkun Xu, Shouhong
Ding, Shuigeng Zhou
- Abstract要約: DuetFaceは、周波数領域における協調推論を利用するプライバシー保護の顔認識手法である。
提案手法は、保護されていないArcFaceと同等の認識精度とコストを達成し、最先端のプライバシ保存手法より優れている。
- 参考スコア(独自算出の注目度): 23.4606547767188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the wide application of face recognition systems, there is rising
concern that original face images could be exposed to malicious intents and
consequently cause personal privacy breaches. This paper presents DuetFace, a
novel privacy-preserving face recognition method that employs collaborative
inference in the frequency domain. Starting from a counterintuitive discovery
that face recognition can achieve surprisingly good performance with only
visually indistinguishable high-frequency channels, this method designs a
credible split of frequency channels by their cruciality for visualization and
operates the server-side model on non-crucial channels. However, the model
degrades in its attention to facial features due to the missing visual
information. To compensate, the method introduces a plug-in interactive block
to allow attention transfer from the client-side by producing a feature mask.
The mask is further refined by deriving and overlaying a facial region of
interest (ROI). Extensive experiments on multiple datasets validate the
effectiveness of the proposed method in protecting face images from undesired
visual inspection, reconstruction, and identification while maintaining high
task availability and performance. Results show that the proposed method
achieves a comparable recognition accuracy and computation cost to the
unprotected ArcFace and outperforms the state-of-the-art privacy-preserving
methods. The source code is available at
https://github.com/Tencent/TFace/tree/master/recognition/tasks/duetface.
- Abstract(参考訳): 顔認識システムの広範な応用により、オリジナルの顔画像が悪意のある意図に晒され、個人のプライバシー侵害を引き起こす可能性があるという懸念が高まっている。
本稿では,周波数領域における協調推論を利用した新しいプライバシー保護顔認識手法であるDuetFaceを提案する。
視覚的に識別不能な高周波チャネルのみを用いて、顔認識が驚くほど優れた性能を達成できるという反直感的な発見から始まり、この方法では、可視化の重要さによって周波数チャネルの信頼性の高い分割を設計し、非クラシカルチャネル上でサーバサイドモデルを操作する。
しかし、このモデルは視覚情報の欠如により顔の特徴に注意を向けない。
補うために、特徴マスクを作成してクライアント側から注意を移すことができるプラグインインタラクティブブロックを導入する。
顔の利害領域(roi)を導出し、重ね合わせることにより、マスクをさらに洗練する。
複数のデータセットに対する広範囲な実験は、高いタスク可用性と性能を維持しながら、望ましくない視覚検査、再構築、識別から顔画像を保護するための提案手法の有効性を検証する。
その結果,提案手法は保護されていないarcfaceと同等の認識精度と計算コストを達成し,最先端のプライバシ保存手法よりも優れていることがわかった。
ソースコードはhttps://github.com/tencent/tface/tree/master/recognition/tasks/duetfaceで入手できる。
関連論文リスト
- Transferable Adversarial Facial Images for Privacy Protection [15.211743719312613]
視覚的品質を維持しつつ、転送性を改善した新しい顔プライバシー保護方式を提案する。
生成モデルの潜在空間をトラバースするために,まずグローバルな逆潜時探索を利用する。
次に、視覚的アイデンティティ情報を保存するための重要なランドマーク正規化モジュールを導入する。
論文 参考訳(メタデータ) (2024-07-18T02:16:11Z) - Privacy-Preserving Face Recognition Using Trainable Feature Subtraction [40.47645421424354]
顔認識はプライバシーの懸念を増している。
本稿では,視覚障害と回復障害に対する顔画像保護について検討する。
我々は,この手法を新たなプライバシ保護顔認識手法であるMinusFaceに精錬する。
論文 参考訳(メタデータ) (2024-03-19T05:27:52Z) - Privacy-Preserving Face Recognition in Hybrid Frequency-Color Domain [16.05230409730324]
顔画像は、各ユーザのアイデンティティ情報に関連付けられた、敏感なバイオメトリック属性である。
本稿では,顔認識の入力次元を低減するために,ハイブリッド周波数-カラー融合法を提案する。
1:Nの検証シナリオの最先端よりも約2.6%から4.2%高い精度を持つ。
論文 参考訳(メタデータ) (2024-01-24T11:27:32Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Diff-Privacy: Diffusion-based Face Privacy Protection [58.1021066224765]
本稿では,Diff-Privacyと呼ばれる拡散モデルに基づく顔のプライバシー保護手法を提案する。
具体的には、提案したマルチスケール画像インバージョンモジュール(MSI)をトレーニングし、元の画像のSDMフォーマット条件付き埋め込みのセットを得る。
本研究は,条件付き埋め込みに基づいて,組込みスケジューリング戦略を設計し,デノナイズプロセス中に異なるエネルギー関数を構築し,匿名化と視覚的アイデンティティ情報隠蔽を実現する。
論文 参考訳(メタデータ) (2023-09-11T09:26:07Z) - Privacy-Preserving Face Recognition Using Random Frequency Components [46.95003101593304]
顔認識によってプライバシーの懸念が高まっている。
人間の知覚可能な低周波成分を抽出することで視覚情報を隠蔽することを提案する。
得られた知見を,プライバシ保護のための新しい顔認識手法であるPartialFaceに抽出する。
論文 参考訳(メタデータ) (2023-08-21T04:31:02Z) - Privacy-Preserving Face Recognition with Learnable Privacy Budgets in
Frequency Domain [77.8858706250075]
本稿では,周波数領域における差分プライバシーを用いたプライバシ保護顔認証手法を提案する。
本手法はいくつかの古典的顔認証テストセットで非常によく機能する。
論文 参考訳(メタデータ) (2022-07-15T07:15:36Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。