Convergence Rate Analysis for Optimal Computing Budget Allocation
Algorithms
- URL: http://arxiv.org/abs/2211.14722v2
- Date: Tue, 29 Nov 2022 01:49:34 GMT
- Title: Convergence Rate Analysis for Optimal Computing Budget Allocation
Algorithms
- Authors: Yanwen Li, Siyang Gao
- Abstract summary: Ordinal optimization (OO) is a widely-studied technique for optimizing discrete-event dynamic systems.
A well-known method in OO is the optimal computing budget allocation (OCBA)
In this paper, we investigate two popular OCBA algorithms.
- Score: 1.713291434132985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ordinal optimization (OO) is a widely-studied technique for optimizing
discrete-event dynamic systems (DEDS). It evaluates the performance of the
system designs in a finite set by sampling and aims to correctly make ordinal
comparison of the designs. A well-known method in OO is the optimal computing
budget allocation (OCBA). It builds the optimality conditions for the number of
samples allocated to each design, and the sample allocation that satisfies the
optimality conditions is shown to asymptotically maximize the probability of
correct selection for the best design. In this paper, we investigate two
popular OCBA algorithms. With known variances for samples of each design, we
characterize their convergence rates with respect to different performance
measures. We first demonstrate that the two OCBA algorithms achieve the optimal
convergence rate under measures of probability of correct selection and
expected opportunity cost. It fills the void of convergence analysis for OCBA
algorithms. Next, we extend our analysis to the measure of cumulative regret, a
main measure studied in the field of machine learning. We show that with minor
modification, the two OCBA algorithms can reach the optimal convergence rate
under cumulative regret. It indicates the potential of broader use of
algorithms designed based on the OCBA optimality conditions.
Related papers
- On Constructing Algorithm Portfolios in Algorithm Selection for Computationally Expensive Black-box Optimization in the Fixed-budget Setting [0.0]
This paper argues the importance of considering the number of function evaluations used in the sampling phase when constructing algorithm portfolios.
The results show that algorithm portfolios constructed by our approach perform significantly better than those by the previous approach.
arXiv Detail & Related papers (2024-05-13T03:31:13Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Selection of the Most Probable Best [2.1095005405219815]
We consider an expected-value ranking and selection (R&S) problem where all k solutions' simulation outputs depend on a common parameter whose uncertainty can be modeled by a distribution.
We define the most probable best (MPB) to be the solution that has the largest probability of being optimal with respect to the distribution.
We devise a series of algorithms that replace the unknown means in the optimality conditions with their estimates and prove the algorithms' sampling ratios achieve the conditions as the simulation budget increases.
arXiv Detail & Related papers (2022-07-15T15:27:27Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - A unified surrogate-based scheme for black-box and preference-based
optimization [2.561649173827544]
We show that black-box and preference-based optimization problems are closely related and can be solved using the same family of approaches.
We propose the generalized Metric Response Surface (gMRS) algorithm, an optimization scheme that is a generalization of the popular MSRS framework.
arXiv Detail & Related papers (2022-02-03T08:47:54Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
We propose an efficient parallelizable Bayesian optimization algorithm via Multi-objective ACquisition function Ensemble (MACE)
Our proposed algorithm can reduce the overall simulation time by up to 74 times compared to differential evolution (DE) for the unconstrained optimization problem when the batch size is 15.
For the constrained optimization problem, our proposed algorithm can speed up the optimization process by up to 15 times compared to the weighted expected improvement based Bayesian optimization (WEIBO) approach, when the batch size is 15.
arXiv Detail & Related papers (2021-06-28T13:21:28Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.