A two-step machine learning approach to statistical post-processing of
weather forecasts for power generation
- URL: http://arxiv.org/abs/2207.07589v1
- Date: Fri, 15 Jul 2022 16:38:14 GMT
- Title: A two-step machine learning approach to statistical post-processing of
weather forecasts for power generation
- Authors: \'Agnes Baran and S\'andor Baran
- Abstract summary: Wind and solar energy sources are highly volatile making planning difficult for grid operators.
We propose a two-step machine learning-based approach to calibrating ensemble weather forecasts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By the end of 2021, the renewable energy share of the global electricity
capacity reached 38.3% and the new installations are dominated by wind and
solar energy, showing global increases of 12.7% and 18.5%, respectively.
However, both wind and photovoltaic energy sources are highly volatile making
planning difficult for grid operators, so accurate forecasts of the
corresponding weather variables are essential for reliable electricity
predictions. The most advanced approach in weather prediction is the ensemble
method, which opens the door for probabilistic forecasting; though ensemble
forecast are often underdispersive and subject to systematic bias. Hence, they
require some form of statistical post-processing, where parametric models
provide full predictive distributions of the weather variables at hand. We
propose a general two-step machine learning-based approach to calibrating
ensemble weather forecasts, where in the first step improved point forecasts
are generated, which are then together with various ensemble statistics serve
as input features of the neural network estimating the parameters of the
predictive distribution. In two case studies based of 100m wind speed and
global horizontal irradiance forecasts of the operational ensemble pre diction
system of the Hungarian Meteorological Service, the predictive performance of
this novel method is compared with the forecast skill of the raw ensemble and
the state-of-the-art parametric approaches. Both case studies confirm that at
least up to 48h statistical post-processing substantially improves the
predictive performance of the raw ensemble for all considered forecast
horizons. The investigated variants of the proposed two-step method outperform
in skill their competitors and the suggested new approach is well applicable
for different weather quantities and for a fair range of predictive
distributions.
Related papers
- Machine learning-based probabilistic forecasting of solar irradiance in Chile [0.7067443325368975]
This work investigates probabilistic forecasts of solar irradiance for Regions III and IV in Chile.
We propose a neural network-based post-processing method resulting in improved 8-member ensemble predictions.
All forecasts are evaluated against station observations for 30 locations, and the skill of post-processed predictions is compared to the raw WRF ensemble.
arXiv Detail & Related papers (2024-11-17T13:22:05Z) - Enhancing multivariate post-processed visibility predictions utilizing CAMS forecasts [0.0]
Weather forecasts increasingly incorporate ensemble predictions of visibility.
Post-processing is recommended to enhance the reliability and accuracy of predictions.
Our study confirms that post-processed forecasts are substantially superior to raw and climatological predictions.
arXiv Detail & Related papers (2024-06-20T09:57:49Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Statistical post-processing of visibility ensemble forecasts [0.0]
We investigate the predictive performance of locally, semi-locally and regionally trained proportional odds logistic regression (POLR) and multilayer perceptron (MLP) neural network classifiers.
We show that while climatological forecasts outperform the raw ensemble by a wide margin, post-processing results in further substantial improvement in forecast skill.
arXiv Detail & Related papers (2023-05-24T16:41:36Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
We introduce a machine learning-based method called "GraphCast", which can be trained directly from reanalysis data.
It predicts hundreds of weather variables, over 10 days at 0.25 degree resolution globally, in under one minute.
We show that GraphCast significantly outperforms the most accurate operational deterministic systems on 90% of 1380 verification targets.
arXiv Detail & Related papers (2022-12-24T18:15:39Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Calibration of wind speed ensemble forecasts for power generation [0.0]
In the last decades wind power became the second largest energy source in the EU covering 16% of its electricity demand.
Due to its volatility, accurate short range wind power predictions are required for successful integration of wind energy into the electrical grid.
We show that compared with the raw ensemble, post-processing always improves the calibration of probabilistic and accuracy of point forecasts.
arXiv Detail & Related papers (2021-04-30T11:18:03Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - Machine learning for total cloud cover prediction [0.0]
We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods.
Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill.
RF models provide the smallest increase in predictive performance, while POLR and GBM approaches perform best.
arXiv Detail & Related papers (2020-01-16T17:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.