Enhancing multivariate post-processed visibility predictions utilizing CAMS forecasts
- URL: http://arxiv.org/abs/2406.14159v1
- Date: Thu, 20 Jun 2024 09:57:49 GMT
- Title: Enhancing multivariate post-processed visibility predictions utilizing CAMS forecasts
- Authors: Mária Lakatos, Sándor Baran,
- Abstract summary: Weather forecasts increasingly incorporate ensemble predictions of visibility.
Post-processing is recommended to enhance the reliability and accuracy of predictions.
Our study confirms that post-processed forecasts are substantially superior to raw and climatological predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In our contemporary era, meteorological weather forecasts increasingly incorporate ensemble predictions of visibility - a parameter of great importance in aviation, maritime navigation, and air quality assessment, with direct implications for public health. However, this weather variable falls short of the predictive accuracy achieved for other quantities issued by meteorological centers. Therefore, statistical post-processing is recommended to enhance the reliability and accuracy of predictions. By estimating the predictive distributions of the variables with the aid of historical observations and forecasts, one can achieve statistical consistency between true observations and ensemble predictions. Visibility observations, following the recommendation of the World Meteorological Organization, are typically reported in discrete values; hence, the predictive distribution of the weather quantity takes the form of a discrete parametric law. Recent studies demonstrated that the application of classification algorithms can successfully improve the skill of such discrete forecasts; however, a frequently emerging issue is that certain spatial and/or temporal dependencies could be lost between marginals. Based on visibility ensemble forecasts of the European Centre for Medium-Range Weather Forecasts for 30 locations in Central Europe, we investigate whether the inclusion of Copernicus Atmosphere Monitoring Service (CAMS) predictions of the same weather quantity as an additional covariate could enhance the skill of the post-processing methods and whether it contributes to the successful integration of spatial dependence between marginals. Our study confirms that post-processed forecasts are substantially superior to raw and climatological predictions, and the utilization of CAMS forecasts provides a further significant enhancement both in the univariate and multivariate setup.
Related papers
- Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Uncertainty quantification for data-driven weather models [0.0]
We study and compare uncertainty quantification methods to generate probabilistic weather forecasts from a state-of-the-art deterministic data-driven weather model, Pangu-Weather.
Specifically, we compare approaches for quantifying forecast uncertainty based on generating ensemble forecasts via perturbations to the initial conditions.
In a case study on medium-range forecasts of selected weather variables over Europe, the probabilistic forecasts obtained by using the Pangu-Weather model in concert with uncertainty quantification methods show promising results.
arXiv Detail & Related papers (2024-03-20T10:07:51Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - SEEDS: Emulation of Weather Forecast Ensembles with Diffusion Models [13.331224394143117]
Uncertainty quantification is crucial to decision-making.
dominant approach to representing uncertainty in weather forecasting is to generate an ensemble of forecasts.
We propose to amortize the computational cost by emulating these forecasts with deep generative diffusion models learned from historical data.
arXiv Detail & Related papers (2023-06-24T22:00:06Z) - Statistical post-processing of visibility ensemble forecasts [0.0]
We investigate the predictive performance of locally, semi-locally and regionally trained proportional odds logistic regression (POLR) and multilayer perceptron (MLP) neural network classifiers.
We show that while climatological forecasts outperform the raw ensemble by a wide margin, post-processing results in further substantial improvement in forecast skill.
arXiv Detail & Related papers (2023-05-24T16:41:36Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Improving seasonal forecast using probabilistic deep learning [1.1988695717766686]
We develop a probabilistic deep neural network model to enhance seasonal forecast capability and forecast diagnosis.
By leveraging complex physical relationships encoded in climate simulations, our model demonstrates favorable deterministic and probabilistic skill.
We give a more definitive answer to how the El Nino/Southern Oscillation, the dominant mode of seasonal variability, modulates global seasonal predictability.
arXiv Detail & Related papers (2020-10-27T21:02:26Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z) - Machine learning for total cloud cover prediction [0.0]
We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods.
Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill.
RF models provide the smallest increase in predictive performance, while POLR and GBM approaches perform best.
arXiv Detail & Related papers (2020-01-16T17:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.