論文の概要: Computing-In-Memory Neural Network Accelerators for Safety-Critical
Systems: Can Small Device Variations Be Disastrous?
- arxiv url: http://arxiv.org/abs/2207.07626v1
- Date: Fri, 15 Jul 2022 17:38:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-18 15:01:33.469800
- Title: Computing-In-Memory Neural Network Accelerators for Safety-Critical
Systems: Can Small Device Variations Be Disastrous?
- Title(参考訳): 安全臨界システムのための計算メモリ内ニューラルネットワーク加速器:小型デバイスの変動は破滅的か?
- Authors: Zheyu Yan, Xiaobo Sharon Hu, Yiyu Shi
- Abstract要約: NVMデバイスは様々な非理想性、特に製造欠陥やデバイスの動作によるサイクル・ツー・サイクルの変動によるデバイス・ツー・デバイスの変化に悩まされている。
本稿では,高次元空間におけるデバイス変動の特定の組み合わせを効果的に見つける方法を提案する。
- 参考スコア(独自算出の注目度): 15.760502065894778
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Computing-in-Memory (CiM) architectures based on emerging non-volatile memory
(NVM) devices have demonstrated great potential for deep neural network (DNN)
acceleration thanks to their high energy efficiency. However, NVM devices
suffer from various non-idealities, especially device-to-device variations due
to fabrication defects and cycle-to-cycle variations due to the stochastic
behavior of devices. As such, the DNN weights actually mapped to NVM devices
could deviate significantly from the expected values, leading to large
performance degradation. To address this issue, most existing works focus on
maximizing average performance under device variations. This objective would
work well for general-purpose scenarios. But for safety-critical applications,
the worst-case performance must also be considered. Unfortunately, this has
been rarely explored in the literature. In this work, we formulate the problem
of determining the worst-case performance of CiM DNN accelerators under the
impact of device variations. We further propose a method to effectively find
the specific combination of device variation in the high-dimensional space that
leads to the worst-case performance. We find that even with very small device
variations, the accuracy of a DNN can drop drastically, causing concerns when
deploying CiM accelerators in safety-critical applications. Finally, we show
that surprisingly none of the existing methods used to enhance average DNN
performance in CiM accelerators are very effective when extended to enhance the
worst-case performance, and further research down the road is needed to address
this problem.
- Abstract(参考訳): 新たな非揮発性メモリ(NVM)デバイスに基づくコンピューティング・イン・メモリ(CiM)アーキテクチャは、その高エネルギー効率により、ディープニューラルネットワーク(DNN)アクセラレーションに大きな可能性を示している。
しかし、NVMデバイスは様々な非理想性、特に製造欠陥によるデバイス間変異や、デバイスの確率的挙動によるサイクル間変動に悩まされている。
したがって、実際にNVMデバイスにマッピングされたDNN重みは、期待値から大きく逸脱し、パフォーマンスが大幅に低下する可能性がある。
この問題に対処するため、既存の作業の多くは、デバイスの違いによる平均パフォーマンスの最大化に重点を置いている。
この目的は汎用シナリオでうまく機能する。
しかし、安全クリティカルなアプリケーションの場合、最悪の場合のパフォーマンスも考慮する必要があります。
残念ながら、この研究は文献ではほとんど行われていない。
本研究では,CiM DNNアクセラレータの最悪の性能をデバイス変動の影響下で決定する問題を定式化する。
さらに,高次元空間におけるデバイス変動の具体的組み合わせを効果的に見つけ出す手法を提案する。
非常に小さなデバイスバリエーションであっても、DNNの精度が大幅に低下し、安全クリティカルなアプリケーションにCiMアクセラレータをデプロイする際の懸念が生じます。
最後に、CiMアクセラレーターにおける平均DNN性能を高めるために使用されている既存の手法は、最悪の場合の性能を高めるために拡張した場合に非常に効果的であることを示す。
関連論文リスト
- TSB: Tiny Shared Block for Efficient DNN Deployment on NVCIM Accelerators [11.496631244103773]
Tiny Shared Block (TSB)"は、小さな共有1x1畳み込みブロックをDeep Neural Networkアーキテクチャに統合する。
TSBは、20倍以上の推論精度ギャップの改善、5倍以上のトレーニングスピードアップ、デバイス間マッピングコストの削減を実現している。
論文 参考訳(メタデータ) (2024-05-08T20:53:38Z) - Compute-in-Memory based Neural Network Accelerators for Safety-Critical
Systems: Worst-Case Scenarios and Protections [8.813981342105151]
本稿では,CiM加速器の最悪の性能をデバイス変動の影響で特定する問題について検討する。
本稿では,対向訓練とノイズ注入訓練を効果的に組み合わせた,A-TRICEという新たな最悪の事例認識訓練手法を提案する。
実験の結果,A-TRICEは機器の変量下での最悪のケース精度を最大33%向上することがわかった。
論文 参考訳(メタデータ) (2023-12-11T05:56:00Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
ディープニューラルネットワーク(DNN)は多くのシナリオで異常な結果を示した強力なツールです。
しかし、それらの複雑な設計と透明性の欠如は、現実世界のアプリケーションに適用する際の安全性上の懸念を提起する。
DNNの形式的検証(FV)は、安全面の証明可能な保証を提供する貴重なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-12-10T13:51:25Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - Improving Realistic Worst-Case Performance of NVCiM DNN Accelerators
through Training with Right-Censored Gaussian Noise [16.470952550714394]
我々は,CiM加速器上で実行されているDNNモデルの現実的な最悪の性能を,k-th- percentile Performance (KPP) を用いて捉えることを提案する。
本手法は, デバイス変動の影響下でのロバスト性向上のための最先端手法と比較して, KPPの最大26%の改善を実現している。
論文 参考訳(メタデータ) (2023-07-29T01:06:37Z) - Special Session: Approximation and Fault Resiliency of DNN Accelerators [0.9126382223122612]
本稿では,Deep Neural Networkアクセラレータの近似とフォールトレジリエンスについて検討する。
本稿では,DNNに障害注入を行わずにハードウェアのエラーをエミュレートするために近似(AxC)演算回路を提案する。
また,ネットワーク上での断層伝播とマスキングによる耐故障性の微粒化解析も提案する。
論文 参考訳(メタデータ) (2023-05-31T19:27:45Z) - Negative Feedback Training: A Novel Concept to Improve Robustness of NVCIM DNN Accelerators [11.832487701641723]
非揮発性メモリ(NVM)デバイスは、Deep Neural Network(DNN)推論の実行時のエネルギー効率とレイテンシが優れている。
ネットワークから取得したマルチスケールノイズ情報を活用した負フィードバックトレーニング(NFT)を提案する。
提案手法は,既存の最先端手法よりも46.71%の精度向上を実現している。
論文 参考訳(メタデータ) (2023-05-23T22:56:26Z) - Fault-Aware Design and Training to Enhance DNNs Reliability with
Zero-Overhead [67.87678914831477]
ディープニューラルネットワーク(DNN)は、幅広い技術的進歩を可能にする。
最近の知見は、過渡的なハードウェア欠陥がモデル予測を劇的に損なう可能性があることを示唆している。
本研究では,トレーニングとモデル設計の両面で信頼性の問題に取り組むことを提案する。
論文 参考訳(メタデータ) (2022-05-28T13:09:30Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Towards Real-Time DNN Inference on Mobile Platforms with Model Pruning
and Compiler Optimization [56.3111706960878]
ハイエンドなモバイルプラットフォームは、幅広いDeep Neural Network (DNN)アプリケーションのための主要なコンピューティングデバイスとして機能する。
これらのデバイス上の制約付き計算とストレージリソースは、リアルタイムの推論実行に重大な課題をもたらす。
モバイル端末上でのDNN実行を高速化するハードウェアフレンドリーな構造化モデルプルーニングとコンパイラ最適化手法を提案する。
論文 参考訳(メタデータ) (2020-04-22T03:18:23Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
粗粒構造の内部に新しい次元、きめ細かなプルーニングパターンを導入し、これまで知られていなかった設計空間の点を明らかにした。
きめ細かいプルーニングパターンによって高い精度が実現されているため、コンパイラを使ってハードウェア効率を向上し、保証することがユニークな洞察である。
論文 参考訳(メタデータ) (2020-01-01T04:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。