論文の概要: A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading
- arxiv url: http://arxiv.org/abs/2309.00907v1
- Date: Sat, 2 Sep 2023 11:01:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 00:26:41.977582
- Title: A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading
- Title(参考訳): 動的計算オフロードのためのマルチヘッドアンサンブルマルチタスク学習手法
- Authors: Ruihuai Liang, Bo Yang, Zhiwen Yu, Xuelin Cao, Derrick Wing Kwan Ng,
Chau Yuen
- Abstract要約: 共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
- 参考スコア(独自算出の注目度): 62.34538208323411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computation offloading has become a popular solution to support
computationally intensive and latency-sensitive applications by transferring
computing tasks to mobile edge servers (MESs) for execution, which is known as
mobile/multi-access edge computing (MEC). To improve the MEC performance, it is
required to design an optimal offloading strategy that includes offloading
decision (i.e., whether offloading or not) and computational resource
allocation of MEC. The design can be formulated as a mixed-integer nonlinear
programming (MINLP) problem, which is generally NP-hard and its effective
solution can be obtained by performing online inference through a well-trained
deep neural network (DNN) model. However, when the system environments change
dynamically, the DNN model may lose efficacy due to the drift of input
parameters, thereby decreasing the generalization ability of the DNN model. To
address this unique challenge, in this paper, we propose a multi-head ensemble
multi-task learning (MEMTL) approach with a shared backbone and multiple
prediction heads (PHs). Specifically, the shared backbone will be invariant
during the PHs training and the inferred results will be ensembled, thereby
significantly reducing the required training overhead and improving the
inference performance. As a result, the joint optimization problem for
offloading decision and resource allocation can be efficiently solved even in a
time-varying wireless environment. Experimental results show that the proposed
MEMTL outperforms benchmark methods in both the inference accuracy and mean
square error without requiring additional training data.
- Abstract(参考訳): 計算オフロードは、モバイル/マルチアクセスエッジコンピューティング(mec)として知られるモバイルエッジサーバ(mess)にコンピューティングタスクを転送することで、計算集約的でレイテンシに敏感なアプリケーションをサポートする一般的なソリューションとなっている。
MECの性能を改善するには、オフロード決定(例えば、オフロードの有無)とMECの計算資源割り当てを含む最適なオフロード戦略を設計する必要がある。
この設計は、一般にNPハードである混合整数非線形プログラミング(MINLP)問題として定式化することができ、その効果的な解は、よく訓練されたディープニューラルネットワーク(DNN)モデルを用いてオンライン推論を行うことによって得られる。
しかし,システム環境が動的に変化すると,入力パラメータのドリフトによりDNNモデルの有効性が低下し,DNNモデルの一般化能力が低下する可能性がある。
この特異な課題に対処するため、本稿では、共有バックボーンと複数の予測ヘッド(PH)を備えたマルチヘッドマルチタスク学習(MEMTL)アプローチを提案する。
具体的には、共有バックボーンはphsトレーニング中に不変となり、推論結果がアンサンブルされ、必要なトレーニングオーバーヘッドを大幅に削減し、推論パフォーマンスが向上する。
これにより、時変無線環境においても、オフロード決定と資源配分の連立最適化問題を効率的に解決することができる。
実験の結果,MEMTLは,追加のトレーニングデータを必要とすることなく,推定精度と平均二乗誤差の両方でベンチマーク手法より優れていた。
関連論文リスト
- Online Parallel Multi-Task Relationship Learning via Alternating Direction Method of Multipliers [37.859185005986056]
オンラインマルチタスク学習(OMTL)は、複数のタスク間の固有の関係を活用することで、ストリーミングデータ処理を強化する。
本研究では、分散コンピューティング環境に適した最近の最適化である交互方向乗算器法(ADMM)に基づく新しいOMTLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-09T10:20:13Z) - Towards A Flexible Accuracy-Oriented Deep Learning Module Inference Latency Prediction Framework for Adaptive Optimization Algorithms [0.49157446832511503]
本稿では,ディープラーニングモジュール推論遅延予測フレームワークを提案する。
DNNモジュールごとに複数のRMをトレーニングするために、カスタマイズ可能な入力パラメータのセットをホストする。
トレーニングされたRMのセットを自動的に選択し、全体的な予測精度が最高になる。
論文 参考訳(メタデータ) (2023-12-11T15:15:48Z) - Training Latency Minimization for Model-Splitting Allowed Federated Edge
Learning [16.8717239856441]
我々は,深層ニューラルネットワーク(DNN)の訓練において,クライアントが直面する計算能力の不足を軽減するためのモデル分割許容FL(SFL)フレームワークを提案する。
同期したグローバルアップデート設定では、グローバルトレーニングを完了するためのレイテンシは、クライアントがローカルトレーニングセッションを完了するための最大レイテンシによって決定される。
この混合整数非線形計画問題の解法として,AIモデルのカット層と他のパラメータの量的関係に適合する回帰法を提案し,TLMPを連続的な問題に変換する。
論文 参考訳(メタデータ) (2023-07-21T12:26:42Z) - Scalable Resource Management for Dynamic MEC: An Unsupervised
Link-Output Graph Neural Network Approach [36.32772317151467]
ディープラーニングは、タスクオフロードとリソース割り当てを最適化するために、モバイルエッジコンピューティング(MEC)でうまく採用されている。
エッジネットワークのダイナミクスは、低スケーラビリティと高トレーニングコストという、ニューラルネットワーク(NN)ベースの最適化方法における2つの課題を提起する。
本稿では,新たなリンクアウトプットGNN(LOGNN)ベースの資源管理手法を提案し,MECにおける資源割り当てを柔軟に最適化する。
論文 参考訳(メタデータ) (2023-06-15T08:21:41Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
我々は、問題インスタンスを断片的線形値関数にマッピングすることを学ぶトレーニング可能なニューラルモデルを導入する。
$nu$-SDDPは、ソリューションの品質を犠牲にすることなく、問題解決コストを大幅に削減できる。
論文 参考訳(メタデータ) (2021-12-01T22:55:23Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - Computation Offloading in Multi-Access Edge Computing Networks: A
Multi-Task Learning Approach [7.203439085947118]
マルチアクセスエッジコンピューティング(MEC)は、いくつかのタスクをMECサーバ(MES)に統合された近接アクセスポイント(AP)にオフロードすることで、モバイル機器が計算集約的なアプリケーションに対応できるようにする可能性をすでに示している。
しかし,MESのネットワーク条件や計算資源が限られているため,モバイル端末によるオフロード決定やMESが割り当てる計算資源は,低コストで効率よく達成できない。
我々はMECネットワークのための動的オフロードフレームワークを提案し、アップリンク非直交多重アクセス(NOMA)を用いて複数のデバイスがアップロードできるようにする。
論文 参考訳(メタデータ) (2020-06-29T15:11:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。