Introducing Federated Learning into Internet of Things ecosystems --
preliminary considerations
- URL: http://arxiv.org/abs/2207.07700v1
- Date: Fri, 15 Jul 2022 18:48:57 GMT
- Title: Introducing Federated Learning into Internet of Things ecosystems --
preliminary considerations
- Authors: Karolina Bogacka, Katarzyna Wasielewska-Michniewska, Marcin Paprzycki,
Maria Ganzha, Anastasiya Danilenka, Lambis Tassakos, Eduardo Garro
- Abstract summary: Federated learning (FL) was proposed to facilitate the training of models in a distributed environment.
It supports the protection of (local) data privacy and uses local resources for model training.
- Score: 0.31402652384742363
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) was proposed to facilitate the training of models in
a distributed environment. It supports the protection of (local) data privacy
and uses local resources for model training. Until now, the majority of
research has been devoted to "core issues", such as adaptation of machine
learning algorithms to FL, data privacy protection, or dealing with the effects
of uneven data distribution between clients. This contribution is anchored in a
practical use case, where FL is to be actually deployed within an Internet of
Things ecosystem. Hence, somewhat different issues that need to be considered,
beyond popular considerations found in the literature, are identified.
Moreover, an architecture that enables the building of flexible, and adaptable,
FL solutions is introduced.
Related papers
- Federated Learning in Practice: Reflections and Projections [17.445826363802997]
Federated Learning (FL) is a machine learning technique that enables multiple entities to collaboratively learn a shared model without exchanging their local data.
Production systems from organizations like Google, Apple, and Meta demonstrate the real-world applicability of FL.
We propose a redefined FL framework that prioritizes privacy principles rather than rigid definitions.
arXiv Detail & Related papers (2024-10-11T15:10:38Z) - Advances in APPFL: A Comprehensive and Extensible Federated Learning Framework [1.4206132527980742]
Federated learning (FL) is a distributed machine learning paradigm enabling collaborative model training while preserving data privacy.
We present the recent advances in developing APPFL, a framework and benchmarking suite for federated learning.
We demonstrate the capabilities of APPFL through extensive experiments evaluating various aspects of FL, including communication efficiency, privacy preservation, computational performance, and resource utilization.
arXiv Detail & Related papers (2024-09-17T22:20:26Z) - Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing.
While various algorithms have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention.
arXiv Detail & Related papers (2024-09-05T19:00:18Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
Federated Learning (FL) has become an established technique to facilitate privacy-preserving collaborative training across a multitude of clients.
In the wake of Foundation Models (FM), the reality is different for many deep learning applications.
We discuss the benefits and drawbacks of parameter-efficient fine-tuning (PEFT) for FL applications.
arXiv Detail & Related papers (2024-01-09T10:22:23Z) - Federated Learning for 6G: Paradigms, Taxonomy, Recent Advances and
Insights [52.024964564408]
This paper examines the added-value of implementing Federated Learning throughout all levels of the protocol stack.
It presents important FL applications, addresses hot topics, provides valuable insights and explicits guidance for future research and developments.
Our concluding remarks aim to leverage the synergy between FL and future 6G, while highlighting FL's potential to revolutionize wireless industry.
arXiv Detail & Related papers (2023-12-07T20:39:57Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Hierarchical and Decentralised Federated Learning [3.055801139718484]
Hierarchical Federated Learning extends the traditional FL process to enable more efficient model aggregation.
It can improve performance and reduce costs, whilst also enabling FL to be deployed in environments not well-suited to traditional FL.
H-FL will be crucial to future FL solutions as it can aggregate and distribute models at multiple levels to optimally serve the trade-off between locality dependence and global anomaly robustness.
arXiv Detail & Related papers (2023-04-28T17:06:50Z) - Vertical Federated Learning: A Structured Literature Review [0.0]
Federated learning (FL) has emerged as a promising distributed learning paradigm with an added advantage of data privacy.
In this paper, we present a structured literature review discussing the state-of-the-art approaches in VFL.
arXiv Detail & Related papers (2022-12-01T16:16:41Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - APPFL: Open-Source Software Framework for Privacy-Preserving Federated
Learning [0.0]
Federated learning (FL) enables training models at different sites and updating the weights from the training instead of transferring data to a central location and training as in classical machine learning.
We introduce APPFL, the Argonne Privacy-Preserving Federated Learning framework.
APPFL allows users to leverage implemented privacy-preserving algorithms, implement new algorithms, and simulate and deploy various FL algorithms with privacy-preserving techniques.
arXiv Detail & Related papers (2022-02-08T06:23:05Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.