Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral
Defenders
- URL: http://arxiv.org/abs/2207.07803v1
- Date: Sat, 16 Jul 2022 01:33:13 GMT
- Title: Masked Spatial-Spectral Autoencoders Are Excellent Hyperspectral
Defenders
- Authors: Jiahao Qi, Zhiqiang Gong, Xingyue Liu, Kangcheng Bin, Chen Chen,
Yongqian Li, Wei Xue, Yu Zhang, and Ping Zhong
- Abstract summary: We propose a masked spatial-spectral autoencoder (MSSA) for enhancing the robustness of HSI analysis systems.
To improve the defense transferability and address the problem of limited labelled samples, MSSA employs spectra reconstruction as a pretext task.
Comprehensive experiments over three benchmarks verify the effectiveness of MSSA in comparison with the state-of-the-art hyperspectral classification methods.
- Score: 15.839321488352535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methodology contributes a lot to the development of
hyperspectral image (HSI) analysis community. However, it also makes HSI
analysis systems vulnerable to adversarial attacks. To this end, we propose a
masked spatial-spectral autoencoder (MSSA) in this paper under self-supervised
learning theory, for enhancing the robustness of HSI analysis systems. First, a
masked sequence attention learning module is conducted to promote the inherent
robustness of HSI analysis systems along spectral channel. Then, we develop a
graph convolutional network with learnable graph structure to establish global
pixel-wise combinations.In this way, the attack effect would be dispersed by
all the related pixels among each combination, and a better defense performance
is achievable in spatial aspect.Finally, to improve the defense transferability
and address the problem of limited labelled samples, MSSA employs spectra
reconstruction as a pretext task and fits the datasets in a self-supervised
manner.Comprehensive experiments over three benchmarks verify the effectiveness
of MSSA in comparison with the state-of-the-art hyperspectral classification
methods and representative adversarial defense strategies.
Related papers
- Enhancing Intrusion Detection in IoT Environments: An Advanced Ensemble Approach Using Kolmogorov-Arnold Networks [3.1309870454820277]
This paper introduces a hybrid Intrusion Detection System (IDS) that combines Kolmogorov-Arnold Networks (KANs) with the XGBoost algorithm.
Our proposed IDS leverages the unique capabilities of KANs, which utilize learnable activation functions to model complex relationships within data, alongside the powerful ensemble learning techniques of XGBoost.
Experimental evaluations demonstrate that our hybrid IDS achieves an impressive detection accuracy exceeding 99% in distinguishing between benign and malicious activities.
arXiv Detail & Related papers (2024-08-28T15:58:49Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMA is a vision transformer-based foundation model for HSI interpretation.
It integrates spatial and spectral features using a specially designed spectral enhancement module.
It shows significant advantages in scalability, robustness, cross-modal transferring capability, and real-world applicability.
arXiv Detail & Related papers (2024-06-17T13:22:58Z) - On provable privacy vulnerabilities of graph representations [34.45433384694758]
Graph representation learning (GRL) is critical for extracting insights from complex network structures.
It also raises security concerns due to potential privacy vulnerabilities in these representations.
This paper investigates the structural vulnerabilities in graph neural models where sensitive topological information can be inferred through edge reconstruction attacks.
arXiv Detail & Related papers (2024-02-06T14:26:22Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - ESSAformer: Efficient Transformer for Hyperspectral Image
Super-resolution [76.7408734079706]
Single hyperspectral image super-resolution (single-HSI-SR) aims to restore a high-resolution hyperspectral image from a low-resolution observation.
We propose ESSAformer, an ESSA attention-embedded Transformer network for single-HSI-SR with an iterative refining structure.
arXiv Detail & Related papers (2023-07-26T07:45:14Z) - Defending From Physically-Realizable Adversarial Attacks Through
Internal Over-Activation Analysis [61.68061613161187]
Z-Mask is a robust and effective strategy to improve the robustness of convolutional networks against adversarial attacks.
The presented defense relies on specific Z-score analysis performed on the internal network features to detect and mask the pixels corresponding to adversarial objects in the input image.
Additional experiments showed that Z-Mask is also robust against possible defense-aware attacks.
arXiv Detail & Related papers (2022-03-14T17:41:46Z) - Mask-guided Spectral-wise Transformer for Efficient Hyperspectral Image
Reconstruction [127.20208645280438]
Hyperspectral image (HSI) reconstruction aims to recover the 3D spatial-spectral signal from a 2D measurement.
Modeling the inter-spectra interactions is beneficial for HSI reconstruction.
Mask-guided Spectral-wise Transformer (MST) proposes a novel framework for HSI reconstruction.
arXiv Detail & Related papers (2021-11-15T16:59:48Z) - A Spectral-Spatial-Dependent Global Learning Framework for Insufficient
and Imbalanced Hyperspectral Image Classification [16.93904035334754]
spectral-spatial dependent global learning (SSDGL) framework based on global convolutional long short-term memory (GCL) and global joint attention mechanism (GJAM)
SSDGL has powerful performance in insufficient and imbalanced sample problems and is superior to other state-of-the-art methods.
arXiv Detail & Related papers (2021-05-29T15:39:03Z) - SA-Net: A deep spectral analysis network for image clustering [31.334196673143257]
We propose a deep spectral analysis network for unsupervised representation learning and image clustering.
The SA-Net has the capability to learn deep representations and reveal deep correlations among data samples.
Our proposed SA-Net outperforms 11 benchmarks across a number of image clustering applications.
arXiv Detail & Related papers (2020-09-11T05:27:23Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.