論文の概要: A Survey of Decision Making in Adversarial Games
- arxiv url: http://arxiv.org/abs/2207.07971v1
- Date: Sat, 16 Jul 2022 16:04:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 17:47:21.466222
- Title: A Survey of Decision Making in Adversarial Games
- Title(参考訳): 敵ゲームにおける意思決定に関する調査研究
- Authors: Xiuxian Li, Min Meng, Yiguang Hong, and Jie Chen
- Abstract要約: ポーカー、チェス、エバダー追跡、麻薬の侵入、沿岸警備、サイバーセキュリティ、国防など多くの実践的応用において、プレイヤーは明らかに敵対的な姿勢をとる。
本稿では,対戦型ゲームに広く用いられている3つの主要ゲームモデルについて,体系的な調査を行う。
- 参考スコア(独自算出の注目度): 8.489977267389934
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Game theory has by now found numerous applications in various fields,
including economics, industry, jurisprudence, and artificial intelligence,
where each player only cares about its own interest in a noncooperative or
cooperative manner, but without obvious malice to other players. However, in
many practical applications, such as poker, chess, evader pursuing, drug
interdiction, coast guard, cyber-security, and national defense, players often
have apparently adversarial stances, that is, selfish actions of each player
inevitably or intentionally inflict loss or wreak havoc on other players. Along
this line, this paper provides a systematic survey on three main game models
widely employed in adversarial games, i.e., zero-sum normal-form and
extensive-form games, Stackelberg (security) games, zero-sum differential
games, from an array of perspectives, including basic knowledge of game models,
(approximate) equilibrium concepts, problem classifications, research
frontiers, (approximate) optimal strategy seeking techniques, prevailing
algorithms, and practical applications. Finally, promising future research
directions are also discussed for relevant adversarial games.
- Abstract(参考訳): ゲーム理論は、経済学、産業、法学、人工知能など様々な分野に応用され、各プレイヤーは非協力的または協調的な方法でのみ関心を持つが、他のプレイヤーに明らかな悪意は持たない。
しかし、ポーカー、チェス、エバダー追跡、麻薬の調停、沿岸警備、サイバーセキュリティ、国家防衛といった多くの実践的応用において、プレイヤーは他のプレイヤーに対して必然的に、または故意に損失を被ったり、不穏な野蛮な態度をとることが多い。
そこで本研究では,ゲームモデルの基本知識,(約)平衡概念,問題分類,研究フロンティア,(約)最適戦略探索手法,アルゴリズム,実用的応用など,様々な視点から,敵ゲーム,すなわちゼロサム正規形および拡張フォームゲーム,stackelberg(セキュリティ)ゲーム,ゼロサムディファレンシャルゲーム,ゼロサムディファレンシャルゲームに広く採用されている3つの主要なゲームモデルに関する体系的調査を行う。
最後に、関連する対戦ゲームについて、将来的な研究方向性についても論じる。
関連論文リスト
- Imperfect-Recall Games: Equilibrium Concepts and Their Complexity [74.01381499760288]
エージェントが以前保持していた情報を忘れたとき、不完全なリコールの下で最適な意思決定を行う。
不完全なリコールを伴う広範囲形式のゲームフレームワークにおいて、マルチプレイヤー設定における平衡を求める際の計算複雑性を解析する。
論文 参考訳(メタデータ) (2024-06-23T00:27:28Z) - Securing Equal Share: A Principled Approach for Learning Multiplayer Symmetric Games [21.168085154982712]
マルチプレイヤーゲームにおける平衡は、一意でも爆発的でもない。
本稿では,平等な共有という自然な目的に焦点をあてることで,これらの課題に対処するための最初の一歩を踏み出す。
我々は、様々な設定でほぼ同じシェアを確実に得る、非回帰学習にインスパイアされた、一連の効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-06-06T15:59:17Z) - All by Myself: Learning Individualized Competitive Behaviour with a
Contrastive Reinforcement Learning optimization [57.615269148301515]
競争ゲームのシナリオでは、エージェントのセットは、彼らの目標を最大化し、敵の目標を同時に最小化する決定を学習する必要があります。
本稿では,競争ゲームの表現を学習し,特定の相手の戦略をどうマップするか,それらを破壊するかを学習する3つのニューラルネットワーク層からなる新しいモデルを提案する。
我々の実験は、オフライン、オンライン、競争特化モデル、特に同じ対戦相手と複数回対戦した場合に、我々のモデルがより良いパフォーマンスを達成することを示した。
論文 参考訳(メタデータ) (2023-10-02T08:11:07Z) - Opponent Modeling in Multiplayer Imperfect-Information Games [1.024113475677323]
マルチプレイヤー不完全情報ゲームにおける対戦相手モデルへのアプローチを提案する。
我々は,3人プレイヤのクーンポーカーにおいて,種々の実敵と正確なナッシュ均衡戦略に対する実験を行う。
我々のアルゴリズムは、正確なナッシュ均衡戦略を含む全てのエージェントを著しく上回る。
論文 参考訳(メタデータ) (2022-12-12T16:48:53Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Learning Correlated Equilibria in Mean-Field Games [62.14589406821103]
我々は平均場相関と粗相関平衡の概念を発展させる。
ゲームの構造に関する仮定を必要とせず,効率よくゲーム内で学習できることが示される。
論文 参考訳(メタデータ) (2022-08-22T08:31:46Z) - Generating Diverse and Competitive Play-Styles for Strategy Games [58.896302717975445]
ターン型戦略ゲーム(Tribes)のためのプログレッシブアンプランによるPortfolio Monte Carlo Tree Searchを提案する。
品質分散アルゴリズム(MAP-Elites)を使用して異なるプレイスタイルを実現し、競争レベルを維持しながらパラメータ化する方法を示します。
その結果,このアルゴリズムは,トレーニングに用いるレベルを超えて,幅広いゲームレベルにおいても,これらの目標を達成できることが示された。
論文 参考訳(メタデータ) (2021-04-17T20:33:24Z) - Playing Against the Board: Rolling Horizon Evolutionary Algorithms
Against Pandemic [3.223284371460913]
本稿では,短期的リスク軽減と長期的勝利戦略のバランスをとる必要があるため,コラボレーションボードゲームが人工知能に異なる課題をもたらすことを主張する。
本稿では,協調型ボードゲームにおけるパンデミックの例を示し,このゲームに展開する進化的アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-28T09:22:10Z) - Collaborative Agent Gameplay in the Pandemic Board Game [3.223284371460913]
Pandemicは、すべてのプレイヤーがゲームの進行中に発生する出来事によって引き起こされる課題を克服するために調整する模範的な共同ボードゲームです。
本稿では,すべてのプレイヤーの行動を制御し,この高度に進化した環境において勝つ確率と負けるリスクをバランスさせる人工エージェントを提案する。
提案アルゴリズムは,様々な難易度を持つ異なるゲームにおいて,より一貫した勝利戦略を見出すことができることを示す。
論文 参考訳(メタデータ) (2021-03-21T13:18:20Z) - Learning to Play Sequential Games versus Unknown Opponents [93.8672371143881]
学習者が最初にプレーするゲームと、選択した行動に反応する相手との連続的なゲームについて考察する。
対戦相手の対戦相手列と対戦する際,学習者に対して新しいアルゴリズムを提案する。
我々の結果には、相手の反応の正則性に依存するアルゴリズムの後悔の保証が含まれている。
論文 参考訳(メタデータ) (2020-07-10T09:33:05Z) - Learning to Resolve Alliance Dilemmas in Many-Player Zero-Sum Games [22.38765498549914]
我々は多人数ゼロサムゲームの体系的な研究が人工知能研究の重要な要素であると主張している。
対称ゼロサム行列ゲームを用いて、アライアンス形成が社会的ジレンマと見なされることを示す。
我々は、強化学習をピアツーピア契約機構で強化し、アライアンスを発見・実施する方法を示す。
論文 参考訳(メタデータ) (2020-02-27T10:32:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。