論文の概要: Data Representativeness in Accessibility Datasets: A Meta-Analysis
- arxiv url: http://arxiv.org/abs/2207.08037v1
- Date: Sat, 16 Jul 2022 23:32:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 17:46:58.286449
- Title: Data Representativeness in Accessibility Datasets: A Meta-Analysis
- Title(参考訳): アクセシビリティデータセットにおけるデータ代表性:メタ分析
- Authors: Rie Kamikubo, Lining Wang, Crystal Marte, Amnah Mahmood, Hernisa
Kacorri
- Abstract要約: 障害のある人と高齢者が作成したデータセットをレビューする。
アクセシビリティデータセットは様々な年齢を表すが、性別と人種の差がある。
われわれの努力が、AIに注入されたシステムに、余分なコミュニティをもっと取り入れる可能性の空間を広げることを願っている。
- 参考スコア(独自算出の注目度): 7.6597163467929805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As data-driven systems are increasingly deployed at scale, ethical concerns
have arisen around unfair and discriminatory outcomes for historically
marginalized groups that are underrepresented in training data. In response,
work around AI fairness and inclusion has called for datasets that are
representative of various demographic groups.In this paper, we contribute an
analysis of the representativeness of age, gender, and race & ethnicity in
accessibility datasets - datasets sourced from people with disabilities and
older adults - that can potentially play an important role in mitigating bias
for inclusive AI-infused applications. We examine the current state of
representation within datasets sourced by people with disabilities by reviewing
publicly-available information of 190 datasets, we call these accessibility
datasets. We find that accessibility datasets represent diverse ages, but have
gender and race representation gaps. Additionally, we investigate how the
sensitive and complex nature of demographic variables makes classification
difficult and inconsistent (e.g., gender, race & ethnicity), with the source of
labeling often unknown. By reflecting on the current challenges and
opportunities for representation of disabled data contributors, we hope our
effort expands the space of possibility for greater inclusion of marginalized
communities in AI-infused systems.
- Abstract(参考訳): データ駆動システムが大規模に展開されるにつれて、トレーニングデータに不足している歴史的に疎外されたグループに対する不公平で差別的な結果に関する倫理的な懸念が生まれている。
本稿では、アクセシビリティーデータセット(障害のある人や高齢者から得られたデータセット)における年齢、性別、人種および民族の代表性について分析し、aiを融合したアプリケーションのバイアスを軽減する上で重要な役割を果たす可能性について述べる。
190のデータセットの公開可能な情報をレビューすることで,障害者が発信するデータセット内の表現の現状を調べ,これらのアクセシビリティデータセットと呼ぶ。
アクセシビリティデータセットは様々な年齢を表すが、性別と人種の差がある。
さらに、人口統計学変数のセンシティブで複雑な性質が、分類を困難かつ一貫性のない(例えば、性別、人種、民族)ものにし、ラベル付けの源泉がしばしば不明である。
障害のあるデータコントリビューターの現時点の課題と機会を反映して、当社の取り組みが、aiに干渉されたシステムにおけるマージン化されたコミュニティを包含する可能性を広げることを願っています。
関連論文リスト
- Balancing the Scales: Enhancing Fairness in Facial Expression Recognition with Latent Alignment [5.784550537553534]
このワークル平均は、表情認識システムにおけるバイアスを軽減するために、潜在空間に基づく表現学習を行う。
また、ディープラーニングモデルの公平性と全体的な正確性も向上する。
論文 参考訳(メタデータ) (2024-10-25T10:03:10Z) - Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Ex-Ante Assessment of Discrimination in Dataset [20.574371560492494]
データ所有者は、自分たちのデータの使用が過小評価されているコミュニティにどのように害を与えるかという責任を負う。
本稿では, 個人の反応が感性特性によってどの程度異なるかを示すスコアを生成する, 決定トレエのForest of decision trEEsアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-16T19:28:22Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
2つのメトリクスはデータセットの表現バイアスとステレオタイプバイアスに焦点をあて、もう1つはトレーニングされたモデルの残差バイアスに焦点を当てている。
本稿では、一般的なAffectnetデータセットに基づくFER問題に適用することで、メトリクスの有用性を示す。
論文 参考訳(メタデータ) (2022-05-20T09:40:42Z) - Demographic-Reliant Algorithmic Fairness: Characterizing the Risks of
Demographic Data Collection in the Pursuit of Fairness [0.0]
我々は、アルゴリズムの公正性を実現するために、人口統計に関するより多くのデータを集めることを検討する。
これらの技術は、データガバナンスとシステム抑圧に関するより広範な疑問を、いかに無視するかを示す。
論文 参考訳(メタデータ) (2022-04-18T04:50:09Z) - Improving Fairness of AI Systems with Lossless De-biasing [15.039284892391565]
AIシステムのバイアスを緩和して全体的な公正性を高めることが重要な課題となっている。
我々は,不利益グループにおけるデータの不足を対象とする情報損失のない脱バイアス手法を提案する。
論文 参考訳(メタデータ) (2021-05-10T17:38:38Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - Leveraging Administrative Data for Bias Audits: Assessing Disparate
Coverage with Mobility Data for COVID-19 Policy [61.60099467888073]
管理データのリンクによって,バイアスに対するモビリティデータの監査が可能かを示す。
我々は、高齢者や非白人の有権者が移動データによって捕えられる可能性が低いことを示した。
このような移動データに基づく公衆衛生資源の配分は、高リスク高齢者や少数民族に不当に害を与える可能性があることを示す。
論文 参考訳(メタデータ) (2020-11-14T02:04:14Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。