論文の概要: Balancing the Scales: Enhancing Fairness in Facial Expression Recognition with Latent Alignment
- arxiv url: http://arxiv.org/abs/2410.19444v1
- Date: Fri, 25 Oct 2024 10:03:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:26.072337
- Title: Balancing the Scales: Enhancing Fairness in Facial Expression Recognition with Latent Alignment
- Title(参考訳): スケールのバランスをとる:潜在アライメントによる表情認識の公平性を高める
- Authors: Syed Sameen Ahmad Rizvi, Aryan Seth, Pratik Narang,
- Abstract要約: このワークル平均は、表情認識システムにおけるバイアスを軽減するために、潜在空間に基づく表現学習を行う。
また、ディープラーニングモデルの公平性と全体的な正確性も向上する。
- 参考スコア(独自算出の注目度): 5.784550537553534
- License:
- Abstract: Automatically recognizing emotional intent using facial expression has been a thoroughly investigated topic in the realm of computer vision. Facial Expression Recognition (FER), being a supervised learning task, relies heavily on substantially large data exemplifying various socio-cultural demographic attributes. Over the past decade, several real-world in-the-wild FER datasets that have been proposed were collected through crowd-sourcing or web-scraping. However, most of these practically used datasets employ a manual annotation methodology for labeling emotional intent, which inherently propagates individual demographic biases. Moreover, these datasets also lack an equitable representation of various socio-cultural demographic groups, thereby inducing a class imbalance. Bias analysis and its mitigation have been investigated across multiple domains and problem settings, however, in the FER domain, this is a relatively lesser explored area. This work leverages representation learning based on latent spaces to mitigate bias in facial expression recognition systems, thereby enhancing a deep learning model's fairness and overall accuracy.
- Abstract(参考訳): 表情を用いた感情的意図の自動認識は、コンピュータビジョンの領域において、徹底的に研究されているトピックである。
顔の表情認識(FER)は、教師付き学習課題であり、様々な社会文化的人口統計学的特性を実証する大きなデータに大きく依存している。
過去10年間で、クラウドソーシングやWebスクラッピングを通じて提案された現実のFERデータセットがいくつか集められた。
しかし、これらの実践的なデータセットのほとんどは、感情的な意図をラベル付けするための手動のアノテーション手法を採用しており、これは本質的に個人の人口統計バイアスを伝播させるものである。
さらに、これらのデータセットは、様々な社会文化的人口集団の公平な表現を欠いているため、クラス不均衡を引き起こす。
バイアス分析とその緩和は、複数の領域と問題設定で研究されているが、FERドメインでは、これは比較的少ない探索領域である。
この研究は、潜在空間に基づく表現学習を活用して、表情認識システムのバイアスを軽減することにより、深層学習モデルの公平性と全体的な精度を高める。
関連論文リスト
- Toward Fairer Face Recognition Datasets [69.04239222633795]
顔認識と検証は、ディープ表現の導入によってパフォーマンスが向上したコンピュータビジョンタスクである。
実際のトレーニングデータセットにおける顔データとバイアスのセンシティブな性格による倫理的、法的、技術的な課題は、彼らの開発を妨げる。
生成されたトレーニングデータセットに階層属性のバランス機構を導入することにより、公平性を促進する。
論文 参考訳(メタデータ) (2024-06-24T12:33:21Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
汎用視覚言語モデル(英: General-purpose Vision-Language Model, VLM)は、共通感性属性のための豊富な知識源である。
我々は,VLM予測値と人間定義属性分布の対応関係を解析した。
複数のベンチマークの顔属性分類データセットの実験は、既存の教師なしベースラインよりもモデルの公平性の向上を示している。
論文 参考訳(メタデータ) (2024-03-15T18:37:15Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Gender Stereotyping Impact in Facial Expression Recognition [1.5340540198612824]
近年,機械学習に基づくモデルが表情認識(FER)における最も一般的なアプローチとなっている。
公開可能なFERデータセットでは、見かけ上の性別表現は概ねバランスが取れているが、個々のラベルでの性別表現はそうではない。
我々は、特定のラベルの性別比を変化させることで、異なる量のステレオタイプバイアスを持つ微分データセットを生成する。
我々は、最低バイアス条件下で、性別間の特定の感情の認識において、最大で29 % の差を観察する。
論文 参考訳(メタデータ) (2022-10-11T10:52:23Z) - CIAO! A Contrastive Adaptation Mechanism for Non-Universal Facial
Expression Recognition [80.07590100872548]
本稿では、顔エンコーダの最後の層に異なるデータセットの特定の感情特性を適応させるメカニズムであるContrastive Inhibitory Adaptati On(CIAO)を提案する。
CIAOは、非常にユニークな感情表現を持つ6つの異なるデータセットに対して、表情認識性能が改善されている。
論文 参考訳(メタデータ) (2022-08-10T15:46:05Z) - Data Representativeness in Accessibility Datasets: A Meta-Analysis [7.6597163467929805]
障害のある人と高齢者が作成したデータセットをレビューする。
アクセシビリティデータセットは様々な年齢を表すが、性別と人種の差がある。
われわれの努力が、AIに注入されたシステムに、余分なコミュニティをもっと取り入れる可能性の空間を広げることを願っている。
論文 参考訳(メタデータ) (2022-07-16T23:32:19Z) - Assessing Demographic Bias Transfer from Dataset to Model: A Case Study
in Facial Expression Recognition [1.5340540198612824]
2つのメトリクスはデータセットの表現バイアスとステレオタイプバイアスに焦点をあて、もう1つはトレーニングされたモデルの残差バイアスに焦点を当てている。
本稿では、一般的なAffectnetデータセットに基づくFER問題に適用することで、メトリクスの有用性を示す。
論文 参考訳(メタデータ) (2022-05-20T09:40:42Z) - Affect Analysis in-the-wild: Valence-Arousal, Expressions, Action Units
and a Unified Framework [83.21732533130846]
Aff-Wild と Aff-Wild2 の2つである。
これは、これらのデータベースで訓練された深層ニューラルネットワークの2つのクラスの設計を示す。
インパクト認識を共同で学び、効果的に一般化し、実行することができる新しいマルチタスクおよび全体主義のフレームワークが提示されます。
論文 参考訳(メタデータ) (2021-03-29T17:36:20Z) - Enhancing Facial Data Diversity with Style-based Face Aging [59.984134070735934]
特に、顔データセットは、通常、性別、年齢、人種などの属性の観点からバイアスされる。
本稿では, 細粒度の老化パターンをキャプチャするデータ拡張のための, 生成スタイルに基づく新しいアーキテクチャを提案する。
提案手法は, 年齢移動のための最先端アルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-06-06T21:53:44Z) - Learning to Augment Expressions for Few-shot Fine-grained Facial
Expression Recognition [98.83578105374535]
顔表情データベースF2EDについて述べる。
顔の表情は119人から54人まで、200万枚以上の画像が含まれている。
実世界のシナリオでは,不均一なデータ分布やサンプルの欠如が一般的であるので,数発の表情学習の課題を評価する。
顔画像合成のための統合されたタスク駆動型フレームワークであるComposeal Generative Adversarial Network (Comp-GAN) 学習を提案する。
論文 参考訳(メタデータ) (2020-01-17T03:26:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。