United States Politicians' Tone Became More Negative with 2016 Primary
Campaigns
- URL: http://arxiv.org/abs/2207.08112v1
- Date: Sun, 17 Jul 2022 08:41:14 GMT
- Title: United States Politicians' Tone Became More Negative with 2016 Primary
Campaigns
- Authors: Jonathan K\"ulz, Andreas Spitz, Ahmad Abu-Akel, Stephan G\"unnemann,
Robert West
- Abstract summary: We apply psycholinguistic tools to a novel, comprehensive corpus of 24 million quotes from online news attributed to 18,627 US politicians.
We show that, whereas the frequency of negative emotion words had decreased continuously during Obama's tenure, it suddenly and lastingly increased with the 2016 primary campaigns.
This work provides the first large-scale data-driven evidence of a drastic shift toward a more negative political tone following Trump's campaign start as a catalyst.
- Score: 11.712441267029092
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There is a widespread belief that the tone of US political language has
become more negative recently, in particular when Donald Trump entered
politics. At the same time, there is disagreement as to whether Trump changed
or merely continued previous trends. To date, data-driven evidence regarding
these questions is scarce, partly due to the difficulty of obtaining a
comprehensive, longitudinal record of politicians' utterances. Here we apply
psycholinguistic tools to a novel, comprehensive corpus of 24 million quotes
from online news attributed to 18,627 US politicians in order to analyze how
the tone of US politicians' language evolved between 2008 and 2020. We show
that, whereas the frequency of negative emotion words had decreased
continuously during Obama's tenure, it suddenly and lastingly increased with
the 2016 primary campaigns, by 1.6 pre-campaign standard deviations, or 8% of
the pre-campaign mean, in a pattern that emerges across parties. The effect
size drops by 40% when omitting Trump's quotes, and by 50% when averaging over
speakers rather than quotes, implying that prominent speakers, and Trump in
particular, have disproportionately, though not exclusively, contributed to the
rise in negative language. This work provides the first large-scale data-driven
evidence of a drastic shift toward a more negative political tone following
Trump's campaign start as a catalyst, with important implications for the
debate about the state of US politics.
Related papers
- On the Use of Proxies in Political Ad Targeting [49.61009579554272]
We show that major political advertisers circumvented mitigations by targeting proxy attributes.
Our findings have crucial implications for the ongoing discussion on the regulation of political advertising.
arXiv Detail & Related papers (2024-10-18T17:15:13Z) - Finding Hidden Swing Voters in the 2022 Italian Elections Twitter Discourse [1.3654846342364308]
We examine the dynamics of political messaging and voter behavior on Twitter during the 2022 Italian general elections.
Our analysis reveals that during election periods, the popularity of politicians increases, and there is a notable variation in the use of persuasive language techniques.
Swing voters are more vulnerable to these propaganda techniques compared to non-swing voters, with differences in vulnerability patterns across various types of political shifts.
arXiv Detail & Related papers (2024-07-01T13:34:29Z) - Quantifying the Uniqueness of Donald Trump in Presidential Discourse [51.76056700705539]
This paper introduces a novel metric of uniqueness based on large language models.
We find considerable evidence that Trump's speech patterns diverge from those of all major party nominees for the presidency in recent history.
arXiv Detail & Related papers (2024-01-02T19:00:17Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
We use a dataset of 15 million election-related tweets in the six months preceding election day.
We find that models using data with geographical attributes determine the results of the election with better precision and accuracy than conventional polling methods.
arXiv Detail & Related papers (2023-01-02T12:40:05Z) - Negativity Spreads Faster: A Large-Scale Multilingual Twitter Analysis
on the Role of Sentiment in Political Communication [7.136205674624813]
This paper attempts to analyse tweets of politicians from three European countries.
By utilising state-of-the-art pre-trained language models, we performed sentiment analysis on hundreds of thousands of tweets.
Our analysis indicates that politicians' negatively charged tweets spread more widely, especially in more recent times.
arXiv Detail & Related papers (2022-02-01T13:25:19Z) - Millions of Co-purchases and Reviews Reveal the Spread of Polarization
and Lifestyle Politics across Online Markets [68.8204255655161]
We study the pervasiveness of polarization and lifestyle politics over different product segments in a diverse market.
We sample 234.6 million relations among 21.8 million market entities to find product categories that are politically relevant, aligned, and polarized.
Cultural products are 4 times more polarized than any other segment.
arXiv Detail & Related papers (2022-01-17T18:16:37Z) - Shifting Polarization and Twitter News Influencers between two U.S.
Presidential Elections [92.33485580547801]
We analyze the change of polarization between the 2016 and 2020 U.S. presidential elections.
Most of the top influencers were affiliated with media organizations during both elections.
75% of the top influencers in 2020 were not present in 2016, demonstrating that such status is difficult to retain.
arXiv Detail & Related papers (2021-11-03T20:08:54Z) - Reaching the bubble may not be enough: news media role in online
political polarization [58.720142291102135]
A way of reducing polarization would be by distributing cross-partisan news among individuals with distinct political orientations.
This study investigates whether this holds in the context of nationwide elections in Brazil and Canada.
arXiv Detail & Related papers (2021-09-18T11:34:04Z) - Hate Towards the Political Opponent: A Twitter Corpus Study of the 2020
US Elections on the Basis of Offensive Speech and Stance Detection [11.335643770130238]
We investigate online communication of the supporters of the candidates Biden and Trump, by uttering hateful and offensive communication.
We formulate an annotation task, in which we join the tasks of hateful/offensive speech detection and stance detection.
We analyze if supporters of Joe Biden and the Democratic Party communicate differently than supporters of Donald Trump and the Republican Party.
arXiv Detail & Related papers (2021-03-02T11:59:54Z) - Towards Measuring Adversarial Twitter Interactions against Candidates in
the US Midterm Elections [25.374045377135307]
We measure the adversarial interactions against candidates for the US House of Representatives during the run-up to the 2018 US general election.
We develop a new technique for detecting tweets with toxic content that are directed at any specific candidate.
We use these techniques to outline the breadth of adversarial interactions seen in the election, including offensive name-calling, threats of violence, posting discrediting information, attacks on identity, and adversarial message repetition.
arXiv Detail & Related papers (2020-05-09T10:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.