Zero-shot Medical Image Translation via Frequency-Guided Diffusion
Models
- URL: http://arxiv.org/abs/2304.02742v3
- Date: Sat, 28 Oct 2023 03:42:02 GMT
- Title: Zero-shot Medical Image Translation via Frequency-Guided Diffusion
Models
- Authors: Yunxiang Li, Hua-Chieh Shao, Xiao Liang, Liyuan Chen, Ruiqi Li, Steve
Jiang, Jing Wang, You Zhang
- Abstract summary: We propose a frequency-guided diffusion model (FGDM) that employs frequency-domain filters to guide the diffusion model for structure-preserving image translation.
Based on its design, FGDM allows zero-shot learning, as it can be trained solely on the data from the target domain, and used directly for source-to-target domain translation.
FGDM outperformed the state-of-the-art methods (GAN-based, VAE-based, and diffusion-based) in metrics of Frechet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity
- Score: 9.15810015583615
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, the diffusion model has emerged as a superior generative model that
can produce high quality and realistic images. However, for medical image
translation, the existing diffusion models are deficient in accurately
retaining structural information since the structure details of source domain
images are lost during the forward diffusion process and cannot be fully
recovered through learned reverse diffusion, while the integrity of anatomical
structures is extremely important in medical images. For instance, errors in
image translation may distort, shift, or even remove structures and tumors,
leading to incorrect diagnosis and inadequate treatments. Training and
conditioning diffusion models using paired source and target images with
matching anatomy can help. However, such paired data are very difficult and
costly to obtain, and may also reduce the robustness of the developed model to
out-of-distribution testing data. We propose a frequency-guided diffusion model
(FGDM) that employs frequency-domain filters to guide the diffusion model for
structure-preserving image translation. Based on its design, FGDM allows
zero-shot learning, as it can be trained solely on the data from the target
domain, and used directly for source-to-target domain translation without any
exposure to the source-domain data during training. We evaluated it on three
cone-beam CT (CBCT)-to-CT translation tasks for different anatomical sites, and
a cross-institutional MR imaging translation task. FGDM outperformed the
state-of-the-art methods (GAN-based, VAE-based, and diffusion-based) in metrics
of Frechet Inception Distance (FID), Peak Signal-to-Noise Ratio (PSNR), and
Structural Similarity Index Measure (SSIM), showing its significant advantages
in zero-shot medical image translation.
Related papers
- Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
We introduce a Cross-conditioned Diffusion Model (CDM) for medical image-to-image translation.
First, we propose a Modality-specific Representation Model (MRM) to model the distribution of target modalities.
Then, we design a Modality-decoupled Diffusion Network (MDN) to efficiently and effectively learn the distribution from MRM.
arXiv Detail & Related papers (2024-09-13T02:48:56Z) - Similarity-aware Syncretic Latent Diffusion Model for Medical Image Translation with Representation Learning [15.234393268111845]
Non-contrast CT (NCCT) imaging may reduce image contrast and anatomical visibility, potentially increasing diagnostic uncertainty.
We propose a novel Syncretic generative model based on the latent diffusion model for medical image translation (S$2$LDM)
S$2$LDM enhances the similarity in distinct modal images via syncretic encoding and diffusing, promoting amalgamated information in the latent space and generating medical images with more details in contrast-enhanced regions.
arXiv Detail & Related papers (2024-06-20T03:54:41Z) - FDDM: Unsupervised Medical Image Translation with a Frequency-Decoupled Diffusion Model [2.2726755789556794]
We introduce the Frequency Decoupled Diffusion Model for MR-to-CT conversion.
Our model uses a dual-path reverse diffusion process for low-frequency and high-frequency information.
It can generate high-quality target domain images while maintaining the accuracy of translated anatomical structures.
arXiv Detail & Related papers (2023-11-19T19:44:44Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.
This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.
We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - DiffDis: Empowering Generative Diffusion Model with Cross-Modal
Discrimination Capability [75.9781362556431]
We propose DiffDis to unify the cross-modal generative and discriminative pretraining into one single framework under the diffusion process.
We show that DiffDis outperforms single-task models on both the image generation and the image-text discriminative tasks.
arXiv Detail & Related papers (2023-08-18T05:03:48Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z) - Cross-Modal Causal Intervention for Medical Report Generation [109.83549148448469]
Medical report generation (MRG) is essential for computer-aided diagnosis and medication guidance.
Due to the spurious correlations within image-text data induced by visual and linguistic biases, it is challenging to generate accurate reports reliably describing lesion areas.
We propose a novel Visual-Linguistic Causal Intervention (VLCI) framework for MRG, which consists of a visual deconfounding module (VDM) and a linguistic deconfounding module (LDM)
arXiv Detail & Related papers (2023-03-16T07:23:55Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols.
Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation.
arXiv Detail & Related papers (2022-07-17T15:53:24Z) - Self-Attentive Spatial Adaptive Normalization for Cross-Modality Domain
Adaptation [9.659642285903418]
Cross-modality synthesis of medical images to reduce the costly annotation burden by radiologists.
We present a novel approach for image-to-image translation in medical images, capable of supervised or unsupervised (unpaired image data) setups.
arXiv Detail & Related papers (2021-03-05T16:22:31Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.