Is Integer Arithmetic Enough for Deep Learning Training?
- URL: http://arxiv.org/abs/2207.08822v1
- Date: Mon, 18 Jul 2022 22:36:57 GMT
- Title: Is Integer Arithmetic Enough for Deep Learning Training?
- Authors: Alireza Ghaffari, Marzieh S. Tahaei, Mohammadreza Tayaranian, Masoud
Asgharian, Vahid Partovi Nia
- Abstract summary: replacing floating-point arithmetic with low-bit integer arithmetic is a promising approach to save energy, memory footprint, and latency of deep learning models.
We propose a fully functional integer training pipeline including forward pass, back-propagation, and gradient descent.
Our experimental results show that our proposed method is effective in a wide variety of tasks such as classification (including vision transformers), object detection, and semantic segmentation.
- Score: 2.9136421025415205
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ever-increasing computational complexity of deep learning models makes
their training and deployment difficult on various cloud and edge platforms.
Replacing floating-point arithmetic with low-bit integer arithmetic is a
promising approach to save energy, memory footprint, and latency of deep
learning models. As such, quantization has attracted the attention of
researchers in recent years. However, using integer numbers to form a fully
functional integer training pipeline including forward pass, back-propagation,
and stochastic gradient descent is not studied in detail. Our empirical and
mathematical results reveal that integer arithmetic is enough to train deep
learning models. Unlike recent proposals, instead of quantization, we directly
switch the number representation of computations. Our novel training method
forms a fully integer training pipeline that does not change the trajectory of
the loss and accuracy compared to floating-point, nor does it need any special
hyper-parameter tuning, distribution adjustment, or gradient clipping. Our
experimental results show that our proposed method is effective in a wide
variety of tasks such as classification (including vision transformers), object
detection, and semantic segmentation.
Related papers
- Stepping Forward on the Last Mile [8.756033984943178]
We propose a series of algorithm enhancements that further reduce the memory footprint, and the accuracy gap compared to backpropagation.
Our results demonstrate that on the last mile of model customization on edge devices, training with fixed-point forward gradients is a feasible and practical approach.
arXiv Detail & Related papers (2024-11-06T16:33:21Z) - Gradient-Free Neural Network Training on the Edge [12.472204825917629]
Training neural networks is computationally heavy and energy-intensive.
This work presents a novel technique for training neural networks without needing gradient.
We show that it is possible to train models without gradient-based optimization techniques by identifying erroneous contributions of each neuron towards the expected classification.
arXiv Detail & Related papers (2024-10-13T05:38:39Z) - Speeding up and reducing memory usage for scientific machine learning
via mixed precision [3.746841257785099]
Training neural networks for partial differential equations requires large amounts of memory and computational resources.
In search of computational efficiency, training neural networks using half precision (float16) has gained substantial interest.
We explore mixed precision, which combines the float16 and float32 numerical formats to reduce memory usage and increase computational speed.
Our experiments showcase that mixed precision training not only substantially decreases training times and memory demands but also maintains model accuracy.
arXiv Detail & Related papers (2024-01-30T00:37:57Z) - Guaranteed Approximation Bounds for Mixed-Precision Neural Operators [83.64404557466528]
We build on intuition that neural operator learning inherently induces an approximation error.
We show that our approach reduces GPU memory usage by up to 50% and improves throughput by 58% with little or no reduction in accuracy.
arXiv Detail & Related papers (2023-07-27T17:42:06Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Quantized Training of Gradient Boosting Decision Trees [84.97123593657584]
We propose to quantize all the high-precision gradients in a very simple yet effective way in the GBDT's training algorithm.
With low-precision gradients, most arithmetic operations in GBDT training can be replaced by integer operations of 8, 16, or 32 bits.
We observe up to 2$times$ speedup of our simple quantization strategy compared with SOTA GBDT systems on extensive datasets.
arXiv Detail & Related papers (2022-07-20T06:27:06Z) - Refining neural network predictions using background knowledge [68.35246878394702]
We show we can use logical background knowledge in learning system to compensate for a lack of labeled training data.
We introduce differentiable refinement functions that find a corrected prediction close to the original prediction.
This algorithm finds optimal refinements on complex SAT formulas in significantly fewer iterations and frequently finds solutions where gradient descent can not.
arXiv Detail & Related papers (2022-06-10T10:17:59Z) - NITI: Training Integer Neural Networks Using Integer-only Arithmetic [4.361357921751159]
We present NITI, an efficient deep neural network training framework that computes exclusively with integer arithmetic.
A proof-of-concept open-source software implementation of NITI that utilizes native 8-bit integer operations is presented.
NITI achieves negligible accuracy degradation on the MNIST and CIFAR10 datasets using 8-bit integer storage and computation.
arXiv Detail & Related papers (2020-09-28T07:41:36Z) - A Partial Regularization Method for Network Compression [0.0]
We propose an approach of partial regularization rather than the original form of penalizing all parameters, which is said to be full regularization, to conduct model compression at a higher speed.
Experimental results show that as we expected, the computational complexity is reduced by observing less running time in almost all situations.
Surprisingly, it helps to improve some important metrics such as regression fitting results and classification accuracy in both training and test phases on multiple datasets.
arXiv Detail & Related papers (2020-09-03T00:38:27Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Variance Reduction with Sparse Gradients [82.41780420431205]
Variance reduction methods such as SVRG and SpiderBoost use a mixture of large and small batch gradients.
We introduce a new sparsity operator: The random-top-k operator.
Our algorithm consistently outperforms SpiderBoost on various tasks including image classification, natural language processing, and sparse matrix factorization.
arXiv Detail & Related papers (2020-01-27T08:23:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.