Low-bit Model Quantization for Deep Neural Networks: A Survey
- URL: http://arxiv.org/abs/2505.05530v1
- Date: Thu, 08 May 2025 13:26:19 GMT
- Title: Low-bit Model Quantization for Deep Neural Networks: A Survey
- Authors: Kai Liu, Qian Zheng, Kaiwen Tao, Zhiteng Li, Haotong Qin, Wenbo Li, Yong Guo, Xianglong Liu, Linghe Kong, Guihai Chen, Yulun Zhang, Xiaokang Yang,
- Abstract summary: This article surveys the recent five-year progress towards low-bit quantization on deep neural networks (DNNs)<n>We discuss and compare the state-of-the-art quantization methods and classify them into 8 main categories and 24 sub-categories according to their core techniques.<n>We shed light on the potential research opportunities in the field of model quantization.
- Score: 123.89598730307208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With unprecedented rapid development, deep neural networks (DNNs) have deeply influenced almost all fields. However, their heavy computation costs and model sizes are usually unacceptable in real-world deployment. Model quantization, an effective weight-lighting technique, has become an indispensable procedure in the whole deployment pipeline. The essence of quantization acceleration is the conversion from continuous floating-point numbers to discrete integer ones, which significantly speeds up the memory I/O and calculation, i.e., addition and multiplication. However, performance degradation also comes with the conversion because of the loss of precision. Therefore, it has become increasingly popular and critical to investigate how to perform the conversion and how to compensate for the information loss. This article surveys the recent five-year progress towards low-bit quantization on DNNs. We discuss and compare the state-of-the-art quantization methods and classify them into 8 main categories and 24 sub-categories according to their core techniques. Furthermore, we shed light on the potential research opportunities in the field of model quantization. A curated list of model quantization is provided at https://github.com/Kai-Liu001/Awesome-Model-Quantization.
Related papers
- Starting Positions Matter: A Study on Better Weight Initialization for Neural Network Quantization [71.44469196328507]
Quantization-specific model development techniques such as regularization, quantization-aware training, and quantization-robustness penalties have served to greatly boost the accuracy and robustness of modern DNNs.<n>We present an extensive study examining the effects of different weight initializations on a variety of CNN building blocks commonly used in efficient CNNs.<n>Next, we explore a new method for quantization-robust CNN initialization -- using Graph Hypernetworks (GHN) to predict parameters of quantized DNNs.
arXiv Detail & Related papers (2025-06-12T08:11:34Z) - ISQuant: apply squant to the real deployment [0.0]
We analyze why the combination of quantization and dequantization is used to train the model.
We propose ISQuant as a solution for deploying 8-bit models.
arXiv Detail & Related papers (2024-07-05T15:10:05Z) - NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search [7.971065005161565]
quantization is a technique to convert floating point representations to low bit-width fixed point representations.
We show how to learn new quantized weights over the entire quantized space.
We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
arXiv Detail & Related papers (2023-08-10T14:19:58Z) - A Comprehensive Survey on Model Quantization for Deep Neural Networks in
Image Classification [0.0]
A promising approach is quantization, in which the full-precision values are stored in low bit-width precision.
We present a comprehensive survey of quantization concepts and methods, with a focus on image classification.
We explain the replacement of floating-point operations with low-cost bitwise operations in a quantized DNN and the sensitivity of different layers in quantization.
arXiv Detail & Related papers (2022-05-14T15:08:32Z) - REx: Data-Free Residual Quantization Error Expansion [32.87131159997359]
Deep neural networks (DNNs) are ubiquitous in computer vision and natural language processing, but suffer from high inference cost.
With the growing concerns on privacy rights, we focus our efforts on data-free methods.
We propose REx, a quantization method that leverages residual error expansion, along with group sparsity and an ensemble approximation for better parallelization.
arXiv Detail & Related papers (2022-03-28T11:04:45Z) - Quantune: Post-training Quantization of Convolutional Neural Networks
using Extreme Gradient Boosting for Fast Deployment [15.720551497037176]
We propose an auto-tuner known as Quantune to accelerate the search for the configurations of quantization.
We show that Quantune reduces the search time for quantization by approximately 36.5x with an accuracy loss of 0.07 0.65% across six CNN models.
arXiv Detail & Related papers (2022-02-10T14:05:02Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
We propose Q-ASR, an integer-only, zero-shot quantization scheme for ASR models.
We show negligible WER change as compared to the full-precision baseline models.
Q-ASR exhibits a large compression rate of more than 4x with small WER degradation.
arXiv Detail & Related papers (2021-03-31T06:05:40Z) - A Survey of Quantization Methods for Efficient Neural Network Inference [75.55159744950859]
quantization is the problem of distributing continuous real-valued numbers over a fixed discrete set of numbers to minimize the number of bits required.
It has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas.
Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x.
arXiv Detail & Related papers (2021-03-25T06:57:11Z) - Filter Pre-Pruning for Improved Fine-tuning of Quantized Deep Neural
Networks [0.0]
We propose a new pruning method called Pruning for Quantization (PfQ) which removes the filters that disturb the fine-tuning of the DNN.
Experiments using well-known models and datasets confirmed that the proposed method achieves higher performance with a similar model size.
arXiv Detail & Related papers (2020-11-13T04:12:54Z) - Once Quantization-Aware Training: High Performance Extremely Low-bit
Architecture Search [112.05977301976613]
We propose to combine Network Architecture Search methods with quantization to enjoy the merits of the two sides.
We first propose the joint training of architecture and quantization with a shared step size to acquire a large number of quantized models.
Then a bit-inheritance scheme is introduced to transfer the quantized models to the lower bit, which further reduces the time cost and improves the quantization accuracy.
arXiv Detail & Related papers (2020-10-09T03:52:16Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
We propose an Accurate Quantized object Detection solution, termed AQD, to get rid of floating-point computation.
Our AQD achieves comparable or even better performance compared with the full-precision counterpart under extremely low-bit schemes.
arXiv Detail & Related papers (2020-07-14T09:07:29Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.