論文の概要: Multilingual Transformer Encoders: a Word-Level Task-Agnostic Evaluation
- arxiv url: http://arxiv.org/abs/2207.09076v1
- Date: Tue, 19 Jul 2022 05:23:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 13:37:06.491673
- Title: Multilingual Transformer Encoders: a Word-Level Task-Agnostic Evaluation
- Title(参考訳): 多言語トランスフォーマエンコーダ : 単語レベルのタスク非依存評価
- Authors: F\'elix Gaschi, Fran\c{c}ois Plesse, Parisa Rastin and Yannick
Toussaint
- Abstract要約: 一部のTransformerベースのモデルは、言語間変換学習を実行することができる。
このようなモデルによって構築された文脈化表現のアライメントを評価するための単語レベルタスク非依存手法を提案する。
- 参考スコア(独自算出の注目度): 0.6882042556551609
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some Transformer-based models can perform cross-lingual transfer learning:
those models can be trained on a specific task in one language and give
relatively good results on the same task in another language, despite having
been pre-trained on monolingual tasks only. But, there is no consensus yet on
whether those transformer-based models learn universal patterns across
languages. We propose a word-level task-agnostic method to evaluate the
alignment of contextualized representations built by such models. We show that
our method provides more accurate translated word pairs than previous methods
to evaluate word-level alignment. And our results show that some inner layers
of multilingual Transformer-based models outperform other explicitly aligned
representations, and even more so according to a stricter definition of
multilingual alignment.
- Abstract(参考訳): トランスフォーマーベースのモデルの中には、言語間転送学習を実行できるものもある: これらのモデルは、1つの言語で特定のタスクで訓練され、他の言語で同じタスクで比較的良い結果を与えることができる。
しかし、トランスフォーマーベースのモデルが言語間の共通パターンを学ぶかどうかについては、まだ合意が得られていない。
このようなモデルによって構築された文脈化表現のアライメントを評価するための単語レベルタスク非依存手法を提案する。
本手法は, 単語レベルのアライメントを評価するために, 従来の手法よりも正確な翻訳語対を提供する。
以上の結果から,多言語トランスフォーマーモデルの内部層は,他の明示的なアライメント表現よりも優れており,さらに多言語アライメントの厳密な定義にもとづく。
関連論文リスト
- T3L: Translate-and-Test Transfer Learning for Cross-Lingual Text
Classification [50.675552118811]
言語間テキスト分類は通常、様々な言語で事前訓練された大規模多言語言語モデル(LM)に基づいて構築される。
本稿では,古典的な「翻訳とテスト」パイプラインを再考し,翻訳と分類の段階を適切に分離することを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:33:22Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - mLUKE: The Power of Entity Representations in Multilingual Pretrained
Language Models [15.873069955407406]
我々は、エンティティ表現を持つ24言語で多言語モデルを訓練する。
本稿では,言語間移動タスクにおいて,単語ベース事前学習モデルより一貫して優れることを示す。
また,mLAMAデータセットを用いた多言語クローゼプロンプトタスクによるモデルの評価を行った。
論文 参考訳(メタデータ) (2021-10-15T15:28:38Z) - Translate & Fill: Improving Zero-Shot Multilingual Semantic Parsing with
Synthetic Data [2.225882303328135]
多言語セマンティックパーシングタスクのための銀のトレーニングデータを生成するための新しいTranslate-and-Fill(TaF)手法を提案する。
3つの多言語意味解析データセットの実験結果は、TaFによるデータ拡張が類似システムと競合する精度に達することを示している。
論文 参考訳(メタデータ) (2021-09-09T14:51:11Z) - Are Multilingual Models Effective in Code-Switching? [57.78477547424949]
多言語モデルの有効性を検討し,複合言語設定の能力と適応性について検討する。
この結果から,事前学習した多言語モデルでは,コードスイッチングにおける高品質な表現が必ずしも保証されないことが示唆された。
論文 参考訳(メタデータ) (2021-03-24T16:20:02Z) - VECO: Variable and Flexible Cross-lingual Pre-training for Language
Understanding and Generation [77.82373082024934]
我々はTransformerエンコーダにクロスアテンションモジュールを挿入し、言語間の相互依存を明確に構築する。
独自の言語でコンテキストにのみ条件付けされたマスク付き単語の予測の退化を効果的に回避することができる。
提案した言語間モデルでは,XTREMEベンチマークのさまざまな言語間理解タスクに対して,最先端の新たな結果が提供される。
論文 参考訳(メタデータ) (2020-10-30T03:41:38Z) - Mono vs Multilingual Transformer-based Models: a Comparison across
Several Language Tasks [1.2691047660244335]
BERT (Bidirectional Representations from Transformers) と ALBERT (A Lite BERT) は、言語モデルの事前学習方法である。
ポルトガルでトレーニングされたBERTとAlbertモデルを利用可能にしています。
論文 参考訳(メタデータ) (2020-07-19T19:13:20Z) - Learning to Scale Multilingual Representations for Vision-Language Tasks [51.27839182889422]
SMALRの有効性は、これまでビジョン言語タスクでサポートされた2倍以上の10の多言語で実証されている。
単語の埋め込み手法と比較して,訓練パラメータの1/5以下で,複数言語による画像文検索と先行作業の3~4%の性能評価を行った。
論文 参考訳(メタデータ) (2020-04-09T01:03:44Z) - On the Importance of Word Order Information in Cross-lingual Sequence
Labeling [80.65425412067464]
ソース言語の単語順に適合する言語間モデルでは、ターゲット言語を処理できない可能性がある。
本研究では,ソース言語の単語順序に敏感なモデルを作成することで,対象言語の適応性能が向上するかどうかを検討する。
論文 参考訳(メタデータ) (2020-01-30T03:35:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。