論文の概要: MHR-Net: Multiple-Hypothesis Reconstruction of Non-Rigid Shapes from 2D
Views
- arxiv url: http://arxiv.org/abs/2207.09086v1
- Date: Tue, 19 Jul 2022 05:47:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2022-07-20 13:56:30.082347
- Title: MHR-Net: Multiple-Hypothesis Reconstruction of Non-Rigid Shapes from 2D
Views
- Title(参考訳): MHR-Net:2次元からの非剛体形状の多重補綴再構成
- Authors: Haitian Zeng, Xin Yu, Jiaxu Miao, Yi Yang
- Abstract要約: NRSfM(Nor-Rigid Shapes from Motion)を復元する新しい手法であるMHR-Netを提案する。
MHR-Netは、2Dビューのための合理的な再構築セットを見つけることを目的としており、また、セットから最も可能性が高い再構築を選択する。
実験により、MHR-NetはHuman3.6M、SURREAL、300-VWのデータセット上で最先端の復元精度を達成することが示された。
- 参考スコア(独自算出の注目度): 46.022341180146206
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose MHR-Net, a novel method for recovering Non-Rigid Shapes from
Motion (NRSfM). MHR-Net aims to find a set of reasonable reconstructions for a
2D view, and it also selects the most likely reconstruction from the set. To
deal with the challenging unsupervised generation of non-rigid shapes, we
develop a new Deterministic Basis and Stochastic Deformation scheme in MHR-Net.
The non-rigid shape is first expressed as the sum of a coarse shape basis and a
flexible shape deformation, then multiple hypotheses are generated with
uncertainty modeling of the deformation part. MHR-Net is optimized with
reprojection loss on the basis and the best hypothesis. Furthermore, we design
a new Procrustean Residual Loss, which reduces the rigid rotations between
similar shapes and further improves the performance. Experiments show that
MHR-Net achieves state-of-the-art reconstruction accuracy on Human3.6M, SURREAL
and 300-VW datasets.
- Abstract(参考訳): NRSfM(Non-Rigid Shapes from Motion)を復元する新しい手法であるMHR-Netを提案する。
mhr-netは、2dビューのための合理的な再構築セットを見つけることを目的としている。
厳密でない形状の教師なし生成に対処するため,MHR-Netにおける新しい決定論的基底と確率的変形法を開発した。
非剛性形状をまず粗い形状基底と柔軟な形状変形の和として表現し、次に変形部の不確かさをモデル化して複数の仮説を生成する。
MHR-Netは、再射損失と最良の仮説に基づいて最適化されている。
さらに, 類似形状間の剛性回転を低減し, 性能をさらに向上させる, 新たなprocrustean residual lossの設計を行った。
実験により、MHR-NetはHuman3.6M、SURREAL、300-VWのデータセット上で最先端の復元精度を達成することが示された。
関連論文リスト
- GaussianBody: Clothed Human Reconstruction via 3d Gaussian Splatting [14.937297984020821]
本稿では,3次元ガウシアンスプラッティングをベースとした,ガウシアンボディと呼ばれる新しい布地復元手法を提案する。
静的な3次元ガウススメッティングモデルを動的復元問題に適用することは、複雑な非剛性変形とリッチな布の細部のために非自明である。
本手法は,ダイナミックな衣料人体に高精細な画質で,最先端のフォトリアリスティックなノベルビューレンダリングを実現できることを示す。
論文 参考訳(メタデータ) (2024-01-18T04:48:13Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
本稿では、ビュー依存色とビュー非依存色を分離する2段階のトレーニングプロセスを提案し、さらに2つの新しい一貫性制約を活用して、余分な事前処理を必要とせず、詳細な再構成性能を向上させる。
合成および実世界のデータセットの実験は、事前推定誤差から干渉を減らす能力を示している。
論文 参考訳(メタデータ) (2023-09-18T13:05:23Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
我々は,3次元形状を点から復元するという課題に対処する形状再構成アーキテクチャであるニューラルポアソン表面再構成(nPSR)を導入する。
nPSRには2つの大きな利点がある: まず、高分解能評価において同等の性能を達成しつつ、低分解能データの効率的なトレーニングを可能にする。
全体として、ニューラル・ポアソン表面の再構成は、形状再構成における古典的なディープニューラルネットワークの限界を改良するだけでなく、再構築品質、走行時間、分解能非依存の観点からも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-08-03T13:56:07Z) - NeurAR: Neural Uncertainty for Autonomous 3D Reconstruction [64.36535692191343]
暗黙の神経表現はオフラインの3D再構成において魅力的な結果を示しており、オンラインSLAMシステムの可能性も最近示している。
本論文は,1)新しい表現に基づく視点計画の質を評価するための基準を求めること,2)手作りではなく,異なる場面に一般化可能なデータから基準を学習すること,の2つの課題に対処する。
本手法は, TSDFを用いた変形モデルやビュープランニングなしでの再構成モデルと比較した場合, レンダリングされた画像品質と再構成された3次元モデルの幾何学的品質について, 様々な指標について有意な改善を示す。
論文 参考訳(メタデータ) (2022-07-22T10:05:36Z) - Procrustean Regression Networks: Learning 3D Structure of Non-Rigid
Objects from 2D Annotations [42.476537776831314]
非剛体物体の3次元情報を学習できるニューラルネットワークの学習フレームワークを提案する。
提案手法は,Human 3.6M,300-VW,SURREALデータセット上での最先端手法よりも優れた再構成性能を示す。
論文 参考訳(メタデータ) (2020-07-21T17:29:20Z) - PaMIR: Parametric Model-Conditioned Implicit Representation for
Image-based Human Reconstruction [67.08350202974434]
本研究では,パラメトリックボディモデルと自由形深部暗黙関数を組み合わせたパラメトリックモデル記述型暗黙表現(PaMIR)を提案する。
本手法は, 挑戦的なポーズや衣料品のタイプにおいて, 画像に基づく3次元再構築のための最先端性能を実現する。
論文 参考訳(メタデータ) (2020-07-08T02:26:19Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。