論文の概要: Canonical Pose Reconstruction from Single Depth Image for 3D Non-rigid Pose Recovery on Limited Datasets
- arxiv url: http://arxiv.org/abs/2505.17992v1
- Date: Fri, 23 May 2025 14:58:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:34.173447
- Title: Canonical Pose Reconstruction from Single Depth Image for 3D Non-rigid Pose Recovery on Limited Datasets
- Title(参考訳): 有限データセットを用いた3次元非剛性ポッド復元のための単一深度画像からの正準ポッド再構成
- Authors: Fahd Alhamazani, Yu-Kun Lai, Paul L. Rosin,
- Abstract要約: 2Dインプットからの3D再構成、特に人間のような非剛体オブジェクトは、ユニークな課題を提示する。
従来の手法は、変形空間全体をカバーするために広範囲なトレーニングデータを必要とする非剛体形状に苦しむことが多い。
本研究では,変形可能な形状の単一視点深度画像を標準形に変換する正準ポーズ再構成モデルを提案する。
- 参考スコア(独自算出の注目度): 55.84702107871358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D reconstruction from 2D inputs, especially for non-rigid objects like humans, presents unique challenges due to the significant range of possible deformations. Traditional methods often struggle with non-rigid shapes, which require extensive training data to cover the entire deformation space. This study addresses these limitations by proposing a canonical pose reconstruction model that transforms single-view depth images of deformable shapes into a canonical form. This alignment facilitates shape reconstruction by enabling the application of rigid object reconstruction techniques, and supports recovering the input pose in voxel representation as part of the reconstruction task, utilizing both the original and deformed depth images. Notably, our model achieves effective results with only a small dataset of approximately 300 samples. Experimental results on animal and human datasets demonstrate that our model outperforms other state-of-the-art methods.
- Abstract(参考訳): 2Dインプットからの3D再構成、特に人間のような非剛体物体では、変形の可能性のかなりの範囲により、ユニークな課題が提示される。
従来の手法は、変形空間全体をカバーするために広範囲なトレーニングデータを必要とする非剛体形状に苦しむことが多い。
本研究は, 変形可能な形状の単一視野深度画像を正準形式に変換する正準ポーズ再構成モデルを提案することにより, これらの制約に対処する。
このアライメントは、剛体オブジェクト再構成技術の適用を可能にして形状復元を容易にし、元の深度画像と変形した深度画像の両方を利用して、復元作業の一部として、ボクセル表現における入力ポーズの復元を支援する。
特に,本モデルでは,約300サンプルの小さなデータセットのみを用いて有効な結果が得られる。
動物およびヒトのデータセットに対する実験結果から、我々のモデルは、他の最先端の手法よりも優れていることが示された。
関連論文リスト
- Robust 3D Shape Reconstruction in Zero-Shot from a Single Image in the Wild [22.82439286651921]
本研究では,3次元形状復元に特化して設計された分割と再構成を統合した統合回帰モデルを提案する。
また、オブジェクト、オクローダ、バックグラウンドの幅広いバリエーションをシミュレートするスケーラブルなデータ合成パイプラインも導入しています。
我々の合成データのトレーニングにより,提案モデルは実世界の画像に対して最先端のゼロショット結果が得られる。
論文 参考訳(メタデータ) (2024-03-21T16:40:10Z) - SADIR: Shape-Aware Diffusion Models for 3D Image Reconstruction [2.2954246824369218]
限られた2次元画像からの3次元画像再構成は、コンピュータビジョンと画像解析における長年にわたる課題である。
本研究では,これらの問題に対処する3次元画像再構成のための拡散モデルに基づく形状認識ネットワークSADIRを提案する。
論文 参考訳(メタデータ) (2023-09-06T19:30:22Z) - A Fusion of Variational Distribution Priors and Saliency Map Replay for Continual 3D Reconstruction [1.2289361708127877]
単一画像からの3次元物体形状の予測に焦点をあてた研究課題である。
このタスクは、形状の可視部分と隠蔽部分の両方を予測するために、重要なデータ取得を必要とする。
本稿では,従来のクラスを新しいクラスで学習した後でも合理的に再構築できる変分優先を用いたモデルの設計を目標とする,連続的な学習に基づく3D再構成手法を提案する。
論文 参考訳(メタデータ) (2023-08-17T06:48:55Z) - Unbiased 4D: Monocular 4D Reconstruction with a Neural Deformation Model [76.64071133839862]
モノクロRGBビデオから一般的なデフォーミングシーンをキャプチャすることは、多くのコンピュータグラフィックスや視覚アプリケーションにとって不可欠である。
提案手法であるUb4Dは、大きな変形を処理し、閉塞領域での形状補完を行い、可変ボリュームレンダリングを用いて、単眼のRGBビデオを直接操作することができる。
我々の新しいデータセットの結果は公開され、表面の復元精度と大きな変形に対する堅牢性の観点から、技術の現状が明らかに改善されていることを実証する。
論文 参考訳(メタデータ) (2022-06-16T17:59:54Z) - Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape
Laplacian [58.704089101826774]
形状分類と変形型に最小限の制約を課した3次元画像変形法を提案する。
点雲として表される3次元再構成の基底体積のラプラシアン形状を予測するために,教師付き学習に基づくアプローチを採用する。
実験では,2次元キャラクタと人間の衣料画像の変形実験を行った。
論文 参考訳(メタデータ) (2022-03-29T04:57:18Z) - NeuralReshaper: Single-image Human-body Retouching with Deep Neural
Networks [50.40798258968408]
本稿では,深部生成ネットワークを用いた単一画像における人体の意味的再構成手法であるNeuralReshaperを提案する。
われわれのアプローチは、まずパラメトリックな3次元人間モデルと元の人間の画像とを適合させるフィッティング・セイン・リフォーム・パイプラインに従う。
ペアデータが存在しないデータ不足に対処するために,ネットワークをトレーニングするための新たな自己教師型戦略を導入する。
論文 参考訳(メタデータ) (2022-03-20T09:02:13Z) - Learning Pose-invariant 3D Object Reconstruction from Single-view Images [61.98279201609436]
本稿では,単視点画像のみから3次元形状を学習する,より現実的な構成について検討する。
最大の難しさは、単一のビューイメージが提供できる制約の不足にある。
本稿では, 対角コンパクトな形状空間を学習するために, 効果的な対角領域混同法を提案する。
論文 参考訳(メタデータ) (2020-04-03T02:47:35Z) - Monocular Human Pose and Shape Reconstruction using Part Differentiable
Rendering [53.16864661460889]
近年の研究では、3次元基底真理によって教師されるディープニューラルネットワークを介してパラメトリックモデルを直接推定する回帰に基づく手法が成功している。
本稿では,ボディセグメンテーションを重要な監視対象として紹介する。
部分分割による再構成を改善するために,部分分割により部分ベースモデルを制御可能な部分レベル微分可能部を提案する。
論文 参考訳(メタデータ) (2020-03-24T14:25:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。