Balancing the trade-off between cost and reliability for wireless sensor
networks: a multi-objective optimized deployment method
- URL: http://arxiv.org/abs/2207.09089v1
- Date: Tue, 19 Jul 2022 05:53:55 GMT
- Title: Balancing the trade-off between cost and reliability for wireless sensor
networks: a multi-objective optimized deployment method
- Authors: Long Chen, Yingying Xu, Fangyi Xu, Qian Hu, Zhenzhou Tang
- Abstract summary: We propose an optimal deployment method for practical wireless sensor networks (WSNs)
We develop a novel multi-objective optimization algorithm known as the competitive multi-objective optimization algorithm (CMOMPA)
The results show that the optimized deployment can balance the trade-off among deployment cost, sensing reliability, and network reliability.
- Score: 4.031433260365659
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The deployment of the sensor nodes (SNs) always plays a decisive role in the
system performance of wireless sensor networks (WSNs). In this work, we propose
an optimal deployment method for practical heterogeneous WSNs which gives a
deep insight into the trade-off between the reliability and deployment cost.
Specifically, this work aims to provide the optimal deployment of SNs to
maximize the coverage degree and connection degree, and meanwhile minimize the
overall deployment cost. In addition, this work fully considers the
heterogeneity of SNs (i.e. differentiated sensing range and deployment cost)
and three-dimensional (3-D) deployment scenarios. This is a multi-objective
optimization problem, non-convex, multimodal and NP-hard. To solve it, we
develop a novel swarm-based multi-objective optimization algorithm, known as
the competitive multi-objective marine predators algorithm (CMOMPA) whose
performance is verified by comprehensive comparative experiments with ten other
stateof-the-art multi-objective optimization algorithms. The computational
results demonstrate that CMOMPA is superior to others in terms of convergence
and accuracy and shows excellent performance on multimodal multiobjective
optimization problems. Sufficient simulations are also conducted to evaluate
the effectiveness of the CMOMPA based optimal SNs deployment method. The
results show that the optimized deployment can balance the trade-off among
deployment cost, sensing reliability and network reliability. The source code
is available on https://github.com/iNet-WZU/CMOMPA.
Related papers
- Optimistic ε-Greedy Exploration for Cooperative Multi-Agent Reinforcement Learning [16.049852176246038]
We propose Optimistic $epsilon$-Greedy Exploration, focusing on enhancing exploration to correct value estimations.
We introduce an optimistic updating network to identify optimal actions and sample actions from its distribution with a probability of $epsilon$ during exploration.
Experimental results in various environments reveal that the Optimistic $epsilon$-Greedy Exploration effectively prevents the algorithm from suboptimal solutions.
arXiv Detail & Related papers (2025-02-05T12:06:54Z) - GDSG: Graph Diffusion-based Solution Generator for Optimization Problems in MEC Networks [109.17835015018532]
We present a Graph Diffusion-based Solution Generation (GDSG) method.
This approach is designed to work with suboptimal datasets while converging to the optimal solution large probably.
We build GDSG as a multi-task diffusion model utilizing a Graph Neural Network (GNN) to acquire the distribution of high-quality solutions.
arXiv Detail & Related papers (2024-12-11T11:13:43Z) - Access Point Deployment for Localizing Accuracy and User Rate in Cell-Free Systems [22.49391459228811]
Next-generation mobile networks are designed to provide ubiquitous coverage and networked sensing.
Cell-free is a promising technique to realize this prospect.
This paper aims to tackle the problem of point (AP) deployment in cell-free systems.
arXiv Detail & Related papers (2024-12-10T01:22:32Z) - Synergistic Development of Perovskite Memristors and Algorithms for Robust Analog Computing [53.77822620185878]
We propose a synergistic methodology to concurrently optimize perovskite memristor fabrication and develop robust analog DNNs.
We develop "BayesMulti", a training strategy utilizing BO-guided noise injection to improve the resistance of analog DNNs to memristor imperfections.
Our integrated approach enables use of analog computing in much deeper and wider networks, achieving up to 100-fold improvements.
arXiv Detail & Related papers (2024-12-03T19:20:08Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z) - Multi-Fidelity Bayesian Optimization via Deep Neural Networks [19.699020509495437]
In many applications, the objective function can be evaluated at multiple fidelities to enable a trade-off between the cost and accuracy.
We propose Deep Neural Network Multi-Fidelity Bayesian Optimization (DNN-MFBO) that can flexibly capture all kinds of complicated relationships between the fidelities.
We show the advantages of our method in both synthetic benchmark datasets and real-world applications in engineering design.
arXiv Detail & Related papers (2020-07-06T23:28:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.