Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants
for Copy-Move Forgery Detection
- URL: http://arxiv.org/abs/2207.09135v1
- Date: Tue, 19 Jul 2022 09:11:43 GMT
- Title: Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants
for Copy-Move Forgery Detection
- Authors: Chao Wang, Zhiqiu Huang, Shuren Qi, Yaoshen Yu, Guohua Shen
- Abstract summary: Copy-move forgery is a manipulation of copying and pasting specific patches from and to an image, with potentially illegal or unethical uses.
Recent advances in the forensic methods for copy-move forgery have shown increasing success in detection accuracy and robustness.
For images with high self-similarity or strong signal corruption, the existing algorithms often exhibit inefficient processes and unreliable results.
- Score: 7.460203098159187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Copy-move forgery is a manipulation of copying and pasting specific patches
from and to an image, with potentially illegal or unethical uses. Recent
advances in the forensic methods for copy-move forgery have shown increasing
success in detection accuracy and robustness. However, for images with high
self-similarity or strong signal corruption, the existing algorithms often
exhibit inefficient processes and unreliable results. This is mainly due to the
inherent semantic gap between low-level visual representation and high-level
semantic concept. In this paper, we present a very first study of trying to
mitigate the semantic gap problem in copy-move forgery detection, with spatial
pooling of local moment invariants for midlevel image representation. Our
detection method expands the traditional works on two aspects: 1) we introduce
the bag-of-visual-words model into this field for the first time, may meaning a
new perspective of forensic study; 2) we propose a word-to-phrase feature
description and matching pipeline, covering the spatial structure and visual
saliency information of digital images. Extensive experimental results show the
superior performance of our framework over state-of-the-art algorithms in
overcoming the related problems caused by the semantic gap.
Related papers
- UniForensics: Face Forgery Detection via General Facial Representation [60.5421627990707]
High-level semantic features are less susceptible to perturbations and not limited to forgery-specific artifacts, thus having stronger generalization.
We introduce UniForensics, a novel deepfake detection framework that leverages a transformer-based video network, with a meta-functional face classification for enriched facial representation.
arXiv Detail & Related papers (2024-07-26T20:51:54Z) - Distractors-Immune Representation Learning with Cross-modal Contrastive Regularization for Change Captioning [71.14084801851381]
Change captioning aims to succinctly describe the semantic change between a pair of similar images.
Most existing methods directly capture the difference between them, which risk obtaining error-prone difference features.
We propose a distractors-immune representation learning network that correlates the corresponding channels of two image representations.
arXiv Detail & Related papers (2024-07-16T13:00:33Z) - Image Copy-Move Forgery Detection and Localization Scheme: How to Avoid Missed Detection and False Alarm [10.135979083516174]
Image copy-move is an operation that replaces one part of the image with another part of the same image, which can be used for illegal purposes.
Recent studies have shown that keypoint-based algorithms achieved excellent and robust localization performance.
However, when the input image is low-resolution, most existing keypoint-based algorithms are difficult to generate sufficient keypoints.
arXiv Detail & Related papers (2024-06-05T13:50:29Z) - Can Deep Network Balance Copy-Move Forgery Detection and
Distinguishment? [3.7311680121118345]
Copy-move forgery detection is a crucial research area within digital image forensics.
Recent years have witnessed an increased interest in distinguishing between the original and duplicated objects in copy-move forgeries.
We propose an innovative method that employs the transformer architecture in an end-to-end deep neural network.
arXiv Detail & Related papers (2023-05-17T14:35:56Z) - Learning to search for and detect objects in foveal images using deep
learning [3.655021726150368]
This study employs a fixation prediction model that emulates human objective-guided attention of searching for a given class in an image.
The foveated pictures at each fixation point are then classified to determine whether the target is present or absent in the scene.
We present a novel dual task model capable of performing fixation prediction and detection simultaneously, allowing knowledge transfer between the two tasks.
arXiv Detail & Related papers (2023-04-12T09:50:25Z) - Benchmarking Scientific Image Forgery Detectors [18.225190509954874]
This paper presents an extendable open-source library that reproduces the most common image forgery operations reported by the research integrity community.
We create a large scientific forgery image benchmark (39,423 images) with an enriched ground-truth.
In addition, concerned about the high number of retracted papers due to image duplication, this work evaluates the state-of-the-art copy-move detection methods in the proposed dataset.
arXiv Detail & Related papers (2021-05-26T22:58:20Z) - Content-Based Detection of Temporal Metadata Manipulation [91.34308819261905]
We propose an end-to-end approach to verify whether the purported time of capture of an image is consistent with its content and geographic location.
The central idea is the use of supervised consistency verification, in which we predict the probability that the image content, capture time, and geographical location are consistent.
Our approach improves upon previous work on a large benchmark dataset, increasing the classification accuracy from 59.03% to 81.07%.
arXiv Detail & Related papers (2021-03-08T13:16:19Z) - Exposing Semantic Segmentation Failures via Maximum Discrepancy
Competition [102.75463782627791]
We take steps toward answering the question by exposing failures of existing semantic segmentation methods in the open visual world.
Inspired by previous research on model falsification, we start from an arbitrarily large image set, and automatically sample a small image set by MAximizing the Discrepancy (MAD) between two segmentation methods.
The selected images have the greatest potential in falsifying either (or both) of the two methods.
A segmentation method, whose failures are more difficult to be exposed in the MAD competition, is considered better.
arXiv Detail & Related papers (2021-02-27T16:06:25Z) - Rethinking of the Image Salient Object Detection: Object-level Semantic
Saliency Re-ranking First, Pixel-wise Saliency Refinement Latter [62.26677215668959]
We propose a lightweight, weakly supervised deep network to coarsely locate semantically salient regions.
We then fuse multiple off-the-shelf deep models on these semantically salient regions as the pixel-wise saliency refinement.
Our method is simple yet effective, which is the first attempt to consider the salient object detection mainly as an object-level semantic re-ranking problem.
arXiv Detail & Related papers (2020-08-10T07:12:43Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.