Image Copy-Move Forgery Detection and Localization Scheme: How to Avoid Missed Detection and False Alarm
- URL: http://arxiv.org/abs/2406.03271v1
- Date: Wed, 5 Jun 2024 13:50:29 GMT
- Title: Image Copy-Move Forgery Detection and Localization Scheme: How to Avoid Missed Detection and False Alarm
- Authors: Li Jiang, Zhaowei Lu, Yuebing Gao, Yifan Wang,
- Abstract summary: Image copy-move is an operation that replaces one part of the image with another part of the same image, which can be used for illegal purposes.
Recent studies have shown that keypoint-based algorithms achieved excellent and robust localization performance.
However, when the input image is low-resolution, most existing keypoint-based algorithms are difficult to generate sufficient keypoints.
- Score: 10.135979083516174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image copy-move is an operation that replaces one part of the image with another part of the same image, which can be used for illegal purposes due to the potential semantic changes. Recent studies have shown that keypoint-based algorithms achieved excellent and robust localization performance even when small or smooth tampered areas were involved. However, when the input image is low-resolution, most existing keypoint-based algorithms are difficult to generate sufficient keypoints, resulting in more missed detections. In addition, existing algorithms are usually unable to distinguish between Similar but Genuine Objects (SGO) images and tampered images, resulting in more false alarms. This is mainly due to the lack of further verification of local homography matrix in forgery localization stage. To tackle these problems, this paper firstly proposes an excessive keypoint extraction strategy to overcome missed detection. Subsequently, a group matching algorithm is used to speed up the matching of excessive keypoints. Finally, a new iterative forgery localization algorithm is introduced to quickly form pixel-level localization results while ensuring a lower false alarm. Extensive experimental results show that our scheme has superior performance than state-of-the-art algorithms in overcoming missed detection and false alarm. Our code is available at https://github.com/LUZW1998/CMFDL.
Related papers
- Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - Deep Homography Estimation for Visual Place Recognition [49.235432979736395]
We propose a transformer-based deep homography estimation (DHE) network.
It takes the dense feature map extracted by a backbone network as input and fits homography for fast and learnable geometric verification.
Experiments on benchmark datasets show that our method can outperform several state-of-the-art methods.
arXiv Detail & Related papers (2024-02-25T13:22:17Z) - An Effective Image Copy-Move Forgery Detection Using Entropy Information [5.882089693239905]
This paper introduces entropy images to determine the coordinates and scales of keypoints based on Scale Invariant Feature Transform detector.
An overlapped entropy level clustering algorithm is developed to mitigate the increased matching complexity caused by the non-ideal distribution of gray values in keypoints.
arXiv Detail & Related papers (2023-12-19T02:09:38Z) - An Unforgeable Publicly Verifiable Watermark for Large Language Models [84.2805275589553]
Current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection.
We propose an unforgeable publicly verifiable watermark algorithm named UPV that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages.
arXiv Detail & Related papers (2023-07-30T13:43:27Z) - BALF: Simple and Efficient Blur Aware Local Feature Detector [14.044093492945334]
Local feature detection is a key ingredient of many image processing and computer vision applications.
We propose a simple yet both efficient and effective keypoint detection method that is able to accurately localize the salient keypoints in a blurred image.
Our method takes advantages of a novel multi-layer perceptron (MLP) based architecture that significantly improve the detection repeatability for a blurred image.
arXiv Detail & Related papers (2022-11-27T05:29:57Z) - Fast Key Points Detection and Matching for Tree-Structured Images [4.929206987094714]
This paper offers a new authentication algorithm based on image matching of nano-resolution visual identifiers with tree-shaped patterns.
The proposed algorithm is applicable to a variety of tree-structured image matching, but our focus is on dendrites, recently-developed visual identifiers.
arXiv Detail & Related papers (2022-11-07T00:22:56Z) - Shrinking the Semantic Gap: Spatial Pooling of Local Moment Invariants
for Copy-Move Forgery Detection [7.460203098159187]
Copy-move forgery is a manipulation of copying and pasting specific patches from and to an image, with potentially illegal or unethical uses.
Recent advances in the forensic methods for copy-move forgery have shown increasing success in detection accuracy and robustness.
For images with high self-similarity or strong signal corruption, the existing algorithms often exhibit inefficient processes and unreliable results.
arXiv Detail & Related papers (2022-07-19T09:11:43Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
The objective of image manipulation detection is to identify and locate the manipulated regions in the images.
Recent approaches mostly adopt the sophisticated Convolutional Neural Networks (CNNs) to capture the tampering artifacts left in the images.
We propose a hierarchical Graph Convolutional Network (HGCN-Net), which consists of two parallel branches.
arXiv Detail & Related papers (2022-01-15T01:54:25Z) - An Effective and Robust Detector for Logo Detection [58.448716977297565]
Some attackers fool the well-trained logo detection model for infringement.
A novel logo detector based on the mechanism of looking and thinking twice is proposed in this paper.
We extend detectoRS algorithm to a cascade schema with an equalization loss function, multi-scale transformations, and adversarial data augmentation.
arXiv Detail & Related papers (2021-08-01T10:17:53Z) - DetCo: Unsupervised Contrastive Learning for Object Detection [64.22416613061888]
Unsupervised contrastive learning achieves great success in learning image representations with CNN.
We present a novel contrastive learning approach, named DetCo, which fully explores the contrasts between global image and local image patches.
DetCo consistently outperforms supervised method by 1.6/1.2/1.0 AP on Mask RCNN-C4/FPN/RetinaNet with 1x schedule.
arXiv Detail & Related papers (2021-02-09T12:47:20Z) - A Survey on Patch-based Synthesis: GPU Implementation and Optimization [0.0]
This thesis surveys the research in patch-based synthesis and algorithms for finding correspondences between small local regions of images.
One of the algorithms we have studied is PatchMatch, can find similar regions or "patches" of an image one to two orders of magnitude faster than previous techniques.
In computer graphics, we have explored removing unwanted objects from images, seamlessly moving objects in images, changing image aspect ratios, and video summarization.
arXiv Detail & Related papers (2020-05-11T19:25:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.