論文の概要: Using Neural Networks by Modelling Semi-Active Shock Absorber
- arxiv url: http://arxiv.org/abs/2207.09141v1
- Date: Tue, 19 Jul 2022 09:21:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-20 14:37:19.827150
- Title: Using Neural Networks by Modelling Semi-Active Shock Absorber
- Title(参考訳): 半アクティブ衝撃吸収体モデリングによるニューラルネットワークの利用
- Authors: Moritz Zink, Martin Schiele, Valentin Ivanov
- Abstract要約: 絶え間なく増加する自動車制御システムには、デジタルマッピングに対する新しいアプローチが必要である。
ニューラルネットワーク(NN)を適用する様々な手法は、自動車制御系設計における関連するデジタルツイン(DT)ツールの候補となる。
本稿では, 半能動衝撃吸収器のモデリングにより, 回帰タスクを効率的に処理する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A permanently increasing number of on-board automotive control systems
requires new approaches to their digital mapping that improves functionality in
terms of adaptability and robustness as well as enables their easier on-line
software update. As it can be concluded from many recent studies, various
methods applying neural networks (NN) can be good candidates for relevant
digital twin (DT) tools in automotive control system design, for example, for
controller parameterization and condition monitoring. However, the NN-based DT
has strong requirements to an adequate amount of data to be used in training
and design. In this regard, the paper presents an approach, which demonstrates
how the regression tasks can be efficiently handled by the modeling of a
semi-active shock absorber within the DT framework. The approach is based on
the adaptation of time series augmentation techniques to the stationary data
that increases the variance of the latter. Such a solution gives a background
to elaborate further data engineering methods for the data preparation of
sophisticated databases.
- Abstract(参考訳): 絶え間なく増加する自動車制御システムには、適応性と堅牢性の観点から機能を改善するためのデジタルマッピングへの新たなアプローチが必要であり、オンラインソフトウェアのアップデートが容易になる。
近年の多くの研究から結論が得られたように、ニューラルネットワーク(NN)を適用した様々な手法は、例えば制御器のパラメータ化や条件監視など、自動車制御系設計における関連するデジタルツイン(DT)ツールの候補となる。
しかし、NNベースのDTは、トレーニングや設計に使用する十分な量のデータに対して、強い要求がある。
本稿では,DTフレームワーク内でのセミアクティブ衝撃吸収器のモデリングにより,回帰タスクを効率的に処理する方法を示す。
このアプローチは、時系列の増補技術の定常データへの適応に基づいており、後者のばらつきを増加させる。
このようなソリューションは、洗練されたデータベースのデータ準備のための詳細なデータエンジニアリング手法の背景を提供する。
関連論文リスト
- Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
概念の漂流に適応することは、機械学習において難しい課題である。
通信ネットワークでは、障害イベントの後に交通予報を行う際にこのような問題が生じる。
本稿では,適応学習アルゴリズム,すなわち,データパターンの急激な変化を,再学習を必要とせずに自己適応できる手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T08:47:46Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
ほとんどの機械学習(ML)システムは、トレーニングとデプロイメントの間、定常的で一致したデータ分散を前提としている。
データ分布は、環境要因、センサー特性、タスク・オブ・関心などの変化により、時間とともに変化することが多い。
本稿では,ドメインシフト下での効率的な連続学習のためのアダプタ・リコンフィグレータ(EAR)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-03T23:55:17Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
本研究は、オンラインニューロ進化に基づくニューラルアーキテクチャサーチ(ONE-NAS)アルゴリズムを提案する。
ONE-NASは、オンライン予測タスクのためにリカレントニューラルネットワーク(RNN)を自動設計し、動的にトレーニングする新しいニューラルネットワーク探索手法である。
その結果、ONE-NASは従来の統計時系列予測法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-20T22:25:47Z) - Adversarial Learning Networks: Source-free Unsupervised Domain
Incremental Learning [0.0]
非定常環境では、DNNモデルの更新にはパラメータの再トレーニングやモデル微調整が必要である。
DNN分類モデルを更新するための教師なしソースフリー手法を提案する。
既存の手法とは異なり,本手法では過去のトレーニングデータを格納することなく,非定常的なソースとターゲットタスクに対して段階的にDNNモデルを更新することができる。
論文 参考訳(メタデータ) (2023-01-28T02:16:13Z) - Data efficient reinforcement learning and adaptive optimal perimeter
control of network traffic dynamics [0.0]
本研究は、適応最適周波制御のためのマクロトラフィックダイナミクスの学習のための積分強化学習(IRL)に基づくアプローチを提案する。
サンプリングの複雑さを低減し、利用可能なデータをより効率的に利用するために、IRLアルゴリズムに経験再生(ER)技術を導入している。
IRLに基づくアルゴリズムの収束と制御された交通力学の安定性は、リャプノフ理論によって証明される。
論文 参考訳(メタデータ) (2022-09-13T04:28:49Z) - Bayesian Optimization and Deep Learning forsteering wheel angle
prediction [58.720142291102135]
本研究の目的は,自動走行システムにおける操舵角度予測の精度の高いモデルを得ることである。
BOは限られた試行数で、BOST-LSTMと呼ばれるモデルを特定し、古典的なエンドツーエンド駆動モデルと比較して最も正確な結果を得た。
論文 参考訳(メタデータ) (2021-10-22T15:25:14Z) - Data-driven Small-signal Modeling for Converter-based Power Systems [7.501426386641255]
本稿では,コンバータを用いた電力系統の研究に有用な,データ駆動型小型信号ベースモデルを導出するための完全な手順を詳述する。
モデルを計算するために、単一DTとアンサンブルDTとスプライン回帰の両方を用いて決定木回帰(DT)を用いた。
モデルの適用可能性について論じ、さらなる電力系統小信号関連研究において、開発モデルの可能性を強調した。
論文 参考訳(メタデータ) (2021-08-30T08:10:45Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。