論文の概要: Adversarial Learning Networks: Source-free Unsupervised Domain
Incremental Learning
- arxiv url: http://arxiv.org/abs/2301.12054v1
- Date: Sat, 28 Jan 2023 02:16:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 19:23:20.085177
- Title: Adversarial Learning Networks: Source-free Unsupervised Domain
Incremental Learning
- Title(参考訳): adversarial learning network: ソースフリーな教師なしドメインインクリメンタル学習
- Authors: Abhinit Kumar Ambastha, Leong Tze Yun
- Abstract要約: 非定常環境では、DNNモデルの更新にはパラメータの再トレーニングやモデル微調整が必要である。
DNN分類モデルを更新するための教師なしソースフリー手法を提案する。
既存の手法とは異なり,本手法では過去のトレーニングデータを格納することなく,非定常的なソースとターゲットタスクに対して段階的にDNNモデルを更新することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents an approach for incrementally updating deep neural network
(DNN) models in a non-stationary environment. DNN models are sensitive to
changes in input data distribution, which limits their application to problem
settings with stationary input datasets. In a non-stationary environment,
updating a DNN model requires parameter re-training or model fine-tuning. We
propose an unsupervised source-free method to update DNN classification models.
The contributions of this work are two-fold. First, we use trainable Gaussian
prototypes to generate representative samples for future iterations; second,
using unsupervised domain adaptation, we incrementally adapt the existing model
using unlabelled data. Unlike existing methods, our approach can update a DNN
model incrementally for non-stationary source and target tasks without storing
past training data. We evaluated our work on incremental sentiment prediction
and incremental disease prediction applications and compared our approach to
state-of-the-art continual learning, domain adaptation, and ensemble learning
methods. Our results show that our approach achieved improved performance
compared to existing incremental learning methods. We observe minimal
forgetting of past knowledge over many iterations, which can help us develop
unsupervised self-learning systems.
- Abstract(参考訳): この研究は、非定常環境でディープニューラルネットワーク(DNN)モデルを漸進的に更新するアプローチを示す。
DNNモデルは入力データ分布の変化に敏感であり、定常的な入力データセットによる問題設定に制限される。
非定常環境では、DNNモデルの更新にはパラメータの再トレーニングやモデル微調整が必要である。
DNN分類モデルを更新するための教師なしソースフリー手法を提案する。
この作品の貢献は2つある。
第二に、教師なしのドメイン適応を用いて、ラベルなしのデータを使って既存のモデルを段階的に適応させる。
既存の手法とは異なり,本手法では過去のトレーニングデータを格納することなく,非定常的なソースとターゲットタスクに対して段階的にDNNモデルを更新することができる。
我々はインクリメンタルな感情予測とインクリメンタルな疾患予測アプリケーションについての研究を評価し、最先端の連続学習、ドメイン適応、アンサンブル学習法と比較した。
その結果,既存のインクリメンタル学習手法と比較して,学習性能が向上した。
多くのイテレーションで過去の知識を最小限に忘れることが、教師なしの自己学習システムの開発に役立ちます。
関連論文リスト
- Control-Theoretic Techniques for Online Adaptation of Deep Neural
Networks in Dynamical Systems [0.0]
ディープニューラルネットワーク(DNN)は現在、現代の人工知能、機械学習、データサイエンスの主要なツールである。
多くのアプリケーションでは、DNNは教師付き学習や強化学習を通じてオフラインでトレーニングされ、推論のためにオンラインにデプロイされる。
制御理論からDNNパラメータをオンラインで更新する手法を提案する。
論文 参考訳(メタデータ) (2024-02-01T16:51:11Z) - Continuous Unsupervised Domain Adaptation Using Stabilized
Representations and Experience Replay [23.871860648919593]
本稿では,教師なしドメイン適応(UDA)問題に継続学習(CL)シナリオで対処するアルゴリズムを提案する。
我々の解は、学習した内部分布を安定化し、新しい領域におけるモデル一般化を強化することに基づいている。
経験リプレイを活用して,新たなタスクを学習する際に獲得した知識をモデルが失う,破滅的な忘れ事の問題を克服する。
論文 参考訳(メタデータ) (2024-01-31T05:09:14Z) - Adapt & Align: Continual Learning with Generative Models Latent Space
Alignment [15.729732755625474]
本稿では、生成モデルにおける潜在表現を整列させることにより、ニューラルネットワークの連続的な学習方法であるAdapt & Alignを紹介する。
ニューラルネットワークは、追加データで再トレーニングされた場合、突然のパフォーマンスが低下する。
生成モデルを導入し,その更新過程を2つの部分に分割することで,これらの問題を緩和する手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T10:02:17Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Diffusion-Model-Assisted Supervised Learning of Generative Models for
Density Estimation [10.793646707711442]
本稿では,密度推定のための生成モデルを訓練するためのフレームワークを提案する。
スコアベース拡散モデルを用いてラベル付きデータを生成する。
ラベル付きデータが生成されると、シンプルな完全に接続されたニューラルネットワークをトレーニングして、教師付き方法で生成モデルを学ぶことができます。
論文 参考訳(メタデータ) (2023-10-22T23:56:19Z) - Low-Resource Music Genre Classification with Cross-Modal Neural Model
Reprogramming [129.4950757742912]
ニューラルモデル再プログラミング(NMR)の概念に基づく低リソース(音楽)分類のための事前学習モデルを活用する新しい手法を提案する。
NMRは、凍結した事前学習モデルの入力を変更することにより、ソースドメインからターゲットドメインへの事前学習モデルの再取得を目指している。
実験結果から,大規模データセットに事前学習したニューラルモデルは,この再プログラミング手法を用いて,音楽ジャンルの分類に成功できることが示唆された。
論文 参考訳(メタデータ) (2022-11-02T17:38:33Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Statistical process monitoring of artificial neural networks [1.3213490507208525]
機械学習では、入力と出力の間の学習された関係は、モデルのデプロイの間も有効でなければならない。
本稿では,データストリームの非定常化開始時刻を決定するために,ANNが生成するデータ(埋め込み)の潜在的特徴表現について検討する。
論文 参考訳(メタデータ) (2022-09-15T16:33:36Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z) - ALT-MAS: A Data-Efficient Framework for Active Testing of Machine
Learning Algorithms [58.684954492439424]
少量のラベル付きテストデータのみを用いて機械学習モデルを効率的にテストする新しいフレームワークを提案する。
ベイズニューラルネットワーク(bnn)を用いたモデルアンダーテストの関心指標の推定が目的である。
論文 参考訳(メタデータ) (2021-04-11T12:14:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。