Multi-parametric Analysis for Mixed Integer Linear Programming: An
Application to Transmission Planning and Congestion Control
- URL: http://arxiv.org/abs/2207.09325v1
- Date: Tue, 19 Jul 2022 15:27:10 GMT
- Title: Multi-parametric Analysis for Mixed Integer Linear Programming: An
Application to Transmission Planning and Congestion Control
- Authors: Jian Liu, Rui Bo, Siyuan Wang
- Abstract summary: Enhancing existing transmission lines is a useful tool to combat transmission congestion and guarantee transmission security with increasing demand.
This study concerns the selection of lines whose capacity should be expanded and how much from the perspective of independent system operator (ISO) to minimize the system cost.
We develop the ISO unit commitment and economic dispatch model and show it as a right-hand side uncertainty multiple parametric analysis for the mixed integer linear programming (MILP) problem.
- Score: 9.981355007576715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enhancing existing transmission lines is a useful tool to combat transmission
congestion and guarantee transmission security with increasing demand and
boosting the renewable energy source. This study concerns the selection of
lines whose capacity should be expanded and by how much from the perspective of
independent system operator (ISO) to minimize the system cost with the
consideration of transmission line constraints and electricity generation and
demand balance conditions, and incorporating ramp-up and startup ramp rates,
shutdown ramp rates, ramp-down rate limits and minimum up and minimum down
times. For that purpose, we develop the ISO unit commitment and economic
dispatch model and show it as a right-hand side uncertainty multiple parametric
analysis for the mixed integer linear programming (MILP) problem. We first
relax the binary variable to continuous variables and employ the Lagrange
method and Karush-Kuhn-Tucker conditions to obtain optimal solutions (optimal
decision variables and objective function) and critical regions associated with
active and inactive constraints. Further, we extend the traditional branch and
bound method for the large-scale MILP problem by determining the upper bound of
the problem at each node, then comparing the difference between the upper and
lower bounds and reaching the approximate optimal solution within the decision
makers' tolerated error range. In additional, the objective function's first
derivative on the parameters of each line is used to inform the selection of
lines to ease congestion and maximize social welfare. Finally, the amount of
capacity upgrade will be chosen by balancing the cost-reduction rate of the
objective function on parameters and the cost of the line upgrade. Our findings
are supported by numerical simulation and provide transmission line planners
with decision-making guidance.
Related papers
- Horizon-Free Regret for Linear Markov Decision Processes [92.02082223856479]
A recent line of works showed regret bounds in reinforcement learning can be (nearly) independent of planning horizon.
We give the first horizon-free bound for the popular linear Markov Decision Process (MDP) setting.
In contrast to prior works which explicitly estimate the transition model and compute the inhomogeneous value functions, we directly estimate the value functions and confidence sets.
arXiv Detail & Related papers (2024-03-15T23:50:58Z) - Regret Analysis of Policy Optimization over Submanifolds for Linearly
Constrained Online LQG [12.201535821920624]
We study online linear quadratic Gaussian problems with a given linear constraint imposed on the controller.
We propose online optimistic Newton on manifold (OONM) which provides an online controller based on the prediction on the first and second order information of the function sequence.
arXiv Detail & Related papers (2024-03-13T14:06:18Z) - An adaptive augmented Lagrangian method for training physics and
equality constrained artificial neural networks [0.9137554315375919]
We apply our PECANN framework to solve forward and inverse problems that have an expanded and diverse set of constraints.
We show that ALM with its conventional formulation to update its penalty parameter and Lagrange multiplier stalls for such challenging problems.
We propose an adaptive ALM in which each constraint is assigned a unique penalty parameter that evolve adaptively according to a rule inspired by the adaptive subgradient method.
arXiv Detail & Related papers (2023-06-08T03:16:21Z) - Constrained Optimization via Exact Augmented Lagrangian and Randomized
Iterative Sketching [55.28394191394675]
We develop an adaptive inexact Newton method for equality-constrained nonlinear, nonIBS optimization problems.
We demonstrate the superior performance of our method on benchmark nonlinear problems, constrained logistic regression with data from LVM, and a PDE-constrained problem.
arXiv Detail & Related papers (2023-05-28T06:33:37Z) - Optimal Privacy Preserving for Federated Learning in Mobile Edge
Computing [35.57643489979182]
Federated Learning (FL) with quantization and deliberately added noise over wireless networks is a promising approach to preserve user differential privacy (DP)
This article aims to jointly optimize the quantization and Binomial mechanism parameters and communication resources to maximize the convergence rate under the constraints of the wireless network and DP requirement.
arXiv Detail & Related papers (2022-11-14T07:54:14Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
We use a graph neural network to learn a nonlinear parametrization between the power demanded and the corresponding allocation.
We show through simulations that the use of GNNs in this unsupervised learning context leads to solutions comparable to standard solvers.
arXiv Detail & Related papers (2022-10-17T17:30:09Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
The finite precision level is captured through the use of quantized neural networks (QNNs) that quantize weights and activations in fixed-precision format.
The proposed FL framework can reduce energy consumption until convergence by up to 70% compared to a baseline FL algorithm.
arXiv Detail & Related papers (2022-07-19T16:37:24Z) - Linear Stochastic Bandits over a Bit-Constrained Channel [37.01818450308119]
We introduce a new linear bandit formulation over a bit-constrained channel.
The goal of the server is to take actions based on estimates of an unknown model parameter to minimize cumulative regret.
We prove that when the unknown model is $d$-dimensional, a channel capacity of $O(d)$ bits suffices to achieve order-optimal regret.
arXiv Detail & Related papers (2022-03-02T15:54:03Z) - JUMBO: Scalable Multi-task Bayesian Optimization using Offline Data [86.8949732640035]
We propose JUMBO, an MBO algorithm that sidesteps limitations by querying additional data.
We show that it achieves no-regret under conditions analogous to GP-UCB.
Empirically, we demonstrate significant performance improvements over existing approaches on two real-world optimization problems.
arXiv Detail & Related papers (2021-06-02T05:03:38Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Parameterized MDPs and Reinforcement Learning Problems -- A Maximum
Entropy Principle Based Framework [2.741266294612776]
We present a framework to address a class of sequential decision making problems.
Our framework features learning the optimal control policy with robustness to noisy data.
arXiv Detail & Related papers (2020-06-17T04:08:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.