An adaptive augmented Lagrangian method for training physics and
equality constrained artificial neural networks
- URL: http://arxiv.org/abs/2306.04904v2
- Date: Sat, 15 Jul 2023 17:47:23 GMT
- Title: An adaptive augmented Lagrangian method for training physics and
equality constrained artificial neural networks
- Authors: Shamsulhaq Basir, Inanc Senocak
- Abstract summary: We apply our PECANN framework to solve forward and inverse problems that have an expanded and diverse set of constraints.
We show that ALM with its conventional formulation to update its penalty parameter and Lagrange multiplier stalls for such challenging problems.
We propose an adaptive ALM in which each constraint is assigned a unique penalty parameter that evolve adaptively according to a rule inspired by the adaptive subgradient method.
- Score: 0.9137554315375919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics and equality constrained artificial neural networks (PECANN) are
grounded in methods of constrained optimization to properly constrain the
solution of partial differential equations (PDEs) with their boundary and
initial conditions and any high-fidelity data that may be available. To this
end, adoption of the augmented Lagrangian method within the PECANN framework is
paramount for learning the solution of PDEs without manually balancing the
individual loss terms in the objective function used for determining the
parameters of the neural network. Generally speaking, ALM combines the merits
of the penalty and Lagrange multiplier methods while avoiding the ill
conditioning and convergence issues associated singly with these methods . In
the present work, we apply our PECANN framework to solve forward and inverse
problems that have an expanded and diverse set of constraints. We show that ALM
with its conventional formulation to update its penalty parameter and Lagrange
multipliers stalls for such challenging problems. To address this issue, we
propose an adaptive ALM in which each constraint is assigned a unique penalty
parameter that evolve adaptively according to a rule inspired by the adaptive
subgradient method. Additionally, we revise our PECANN formulation for improved
computational efficiency and savings which allows for mini-batch training. We
demonstrate the efficacy of our proposed approach by solving several forward
and PDE-constrained inverse problems with noisy data, including simulation of
incompressible fluid flows with a primitive-variables formulation of the
Navier-Stokes equations up to a Reynolds number of 1000.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - WANCO: Weak Adversarial Networks for Constrained Optimization problems [5.257895611010853]
We first transform minimax problems into minimax problems using the augmented Lagrangian method.
We then use two (or several) deep neural networks to represent the primal and dual variables respectively.
The parameters in the neural networks are then trained by an adversarial process.
arXiv Detail & Related papers (2024-07-04T05:37:48Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
We develop an ODE based IVP solver which prevents the network from getting ill-conditioned and runs in time linear in the number of parameters.
We show that current methods based on this approach suffer from two key issues.
First, following the ODE produces an uncontrolled growth in the conditioning of the problem, ultimately leading to unacceptably large numerical errors.
arXiv Detail & Related papers (2023-04-28T17:28:18Z) - Investigating and Mitigating Failure Modes in Physics-informed Neural
Networks (PINNs) [0.0]
This paper explores the difficulties in solving partial differential equations (PDEs) using physics-informed neural networks (PINNs)
PINNs use physics as a regularization term in objective function. However, this approach is impractical in the absence of data or prior knowledge of the solution.
Our findings demonstrate that high-order PDEs contaminate backpropagated gradients and hinder convergence.
arXiv Detail & Related papers (2022-09-20T20:46:07Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
In PINNs, the residual form of the PDE of interest and its boundary conditions are lumped into a composite objective function as soft penalties.
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach when applied to different kinds of PDEs.
arXiv Detail & Related papers (2022-06-19T04:12:01Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
Physics-Informed Neural Networks (PINNs) are powerful approximators of solutions to nonlinear partial differential equations (PDEs)
We propose an Augmented Lagrangian relaxation method for PINNs (AL-PINNs)
We demonstrate through various numerical experiments that AL-PINNs yield a much smaller relative error compared with that of state-of-the-art adaptive loss-balancing algorithms.
arXiv Detail & Related papers (2022-04-29T08:33:11Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
Physics-informed neural networks (PINNs) have been proposed to learn the solution of partial differential equations (PDE)
Here, we show that this specific way of formulating the objective function is the source of severe limitations in the PINN approach.
We propose a versatile framework that can tackle both inverse and forward problems.
arXiv Detail & Related papers (2021-09-30T05:55:35Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.