Free to Harmonic Unitary Transformations in Quantum and Koopman Dynamics
- URL: http://arxiv.org/abs/2207.09515v2
- Date: Tue, 4 Oct 2022 15:10:27 GMT
- Title: Free to Harmonic Unitary Transformations in Quantum and Koopman Dynamics
- Authors: Gerard McCaul, Denys I. Bondar
- Abstract summary: We show that an equivalent transformation can be performed for classical systems in the context of Koopman von-Neumann (KvN) dynamics.
We further extend this mapping to dissipative evolutions in both the quantum and classical cases, and show that this mapping imparts an identical time-dependent scaling on the dissipation parameters for both types of dynamics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It has long been known that there exists a coordinate transformation which
exactly maps the quantum free particle to the quantum harmonic oscillator. Here
we extend this result by reformulating it as a unitary operation followed by a
time coordinate transformation. We demonstrate that an equivalent
transformation can be performed for classical systems in the context of Koopman
von-Neumann (KvN) dynamics. We further extend this mapping to dissipative
evolutions in both the quantum and classical cases, and show that this mapping
imparts an identical time-dependent scaling on the dissipation parameters for
both types of dynamics. The derived classical procedure presents a number of
opportunities to import squeezing dependent quantum procedures (such as
Hamiltonian amplification) into the classical regime.
Related papers
- Scaled quantum theory. The bouncing ball problem [0.0]
The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
arXiv Detail & Related papers (2024-10-14T10:09:48Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Classical stochastic representation of quantum mechanics [0.0]
We show that the dynamics of a quantum system can be represented by the dynamics of an underlying classical systems obeying the Hamilton equations of motion.
The probabilistic character of quantum mechanics is devised by treating the wave function as a variable.
arXiv Detail & Related papers (2023-07-31T21:02:43Z) - Schwinger-Keldysh path integral formalism for a Quenched Quantum Inverted Oscillator [0.0]
We study the time-dependent behaviour of quantum correlations of a system governed by out-of-equilibrium dynamics.
Next, we study a specific case, where the system exhibits chaotic behaviour by computing the quantum Lyapunov from the time-dependent behaviour of OTOC.
arXiv Detail & Related papers (2022-10-03T18:00:02Z) - Classical and quantum harmonic oscillators subject to a time dependent
force [0.0]
We address the problem of the quantization of a simple harmonic oscillator perturbed by a time dependent force.
The approach consists of removing the perturbation by a canonical change of coordinates.
To transform between the quantized systems the canonical transformation is implemented as a unitary transformation mapping the states of the perturbed and unperturbed system onto each other.
arXiv Detail & Related papers (2022-04-07T14:13:41Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Koopman wavefunctions and classical states in hybrid quantum-classical
dynamics [0.0]
We deal with the reversible dynamics of coupled quantum and classical systems.
We exploit the theory of hybrid quantum-classical wavefunctions to devise a closure model for the coupled dynamics.
arXiv Detail & Related papers (2021-08-03T13:19:38Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.