Classical and quantum harmonic oscillators subject to a time dependent
force
- URL: http://arxiv.org/abs/2204.03460v2
- Date: Wed, 20 Apr 2022 13:40:10 GMT
- Title: Classical and quantum harmonic oscillators subject to a time dependent
force
- Authors: Henryk Gzyl
- Abstract summary: We address the problem of the quantization of a simple harmonic oscillator perturbed by a time dependent force.
The approach consists of removing the perturbation by a canonical change of coordinates.
To transform between the quantized systems the canonical transformation is implemented as a unitary transformation mapping the states of the perturbed and unperturbed system onto each other.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we address the problem of the quantization of a simple harmonic
oscillator that is perturbed by a time dependent force. The approach consists
of removing the perturbation by a canonical change of coordinates. Since the
quantization procedure uses the classical Hamiltonian formalism as staring
point, the change of variables is carried out using canonical transformations,
and to transform between the quantized systems the canonical transformation is
implemented as a unitary transformation mapping the states of the perturbed and
unperturbed system onto each other.
Related papers
- Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation [33.76659022113328]
This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions.
We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions.
We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension.
arXiv Detail & Related papers (2024-07-22T03:52:14Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - On reconstruction of states from evolution induced by quantum dynamical
semigroups perturbed by covariant measures [50.24983453990065]
We show the ability to restore states of quantum systems from evolution induced by quantum dynamical semigroups perturbed by covariant measures.
Our procedure describes reconstruction of quantum states transmitted via quantum channels and as a particular example can be applied to reconstruction of photonic states transmitted via optical fibers.
arXiv Detail & Related papers (2023-12-02T09:56:00Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - A magnetic clock for a harmonic oscillator [89.99666725996975]
We study how the quantum dynamics transforms into a classical-like behaviour when conditions related with macroscopicity are met by the clock alone.
In the description of this emerging behaviour finds its place the classical notion of time, as well as that of phase-space and trajectories on it.
arXiv Detail & Related papers (2023-10-20T09:55:51Z) - Classical stochastic representation of quantum mechanics [0.0]
We show that the dynamics of a quantum system can be represented by the dynamics of an underlying classical systems obeying the Hamilton equations of motion.
The probabilistic character of quantum mechanics is devised by treating the wave function as a variable.
arXiv Detail & Related papers (2023-07-31T21:02:43Z) - Exact solution and coherent states of an asymmetric oscillator with
position-dependent mass [0.0]
Deformed oscillator with position-dependent mass is studied in classical and quantum formalisms.
Open trajectories in phase space are associated with scattering states and continuous energy spectrum.
An oscillation of the time evolution of the uncertainty relationship is also observed, whose amplitude increases as the deformation increases.
arXiv Detail & Related papers (2023-02-04T14:16:23Z) - Formulation of general dynamical invariants and their unitary relations
for time-dependent coupled quantum oscillators [0.0]
An exact invariant operator of time-dependent coupled oscillators is derived using the Liouville-von Neumann equation.
The unitary relation between this invariant and the invariant of two uncoupled simple harmonic oscillators is represented.
arXiv Detail & Related papers (2022-10-14T06:10:42Z) - Free to Harmonic Unitary Transformations in Quantum and Koopman Dynamics [0.0]
We show that an equivalent transformation can be performed for classical systems in the context of Koopman von-Neumann (KvN) dynamics.
We further extend this mapping to dissipative evolutions in both the quantum and classical cases, and show that this mapping imparts an identical time-dependent scaling on the dissipation parameters for both types of dynamics.
arXiv Detail & Related papers (2022-07-19T18:59:01Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - A new approach to the quantization of the damped harmonic oscillator [0.0]
A new approach for constructing Lagrangians for driven and undriven linearly damped systems is proposed.
A new time coordinate is introduced to ensure that the resulting Lagrangian satisfies the Helmholtz conditions.
arXiv Detail & Related papers (2021-07-13T03:24:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.