論文の概要: Controllable Data Generation by Deep Learning: A Review
- arxiv url: http://arxiv.org/abs/2207.09542v6
- Date: Mon, 18 Mar 2024 06:06:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-20 06:58:04.388622
- Title: Controllable Data Generation by Deep Learning: A Review
- Title(参考訳): ディープラーニングによる制御可能なデータ生成
- Authors: Shiyu Wang, Yuanqi Du, Xiaojie Guo, Bo Pan, Zhaohui Qin, Liang Zhao,
- Abstract要約: 制御可能な深層データ生成は有望な研究領域であり、一般に制御可能な深部データ生成として知られている。
本稿では、制御可能な深層データ生成のエキサイティングな応用を紹介し、既存の研究を実験的に分析し比較する。
- 参考スコア(独自算出の注目度): 22.582082771890974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning has created the opportunity for expressive methods to learn the underlying representation and properties of data. Such capability provides new ways of determining the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationships to generate structural data, given the desired properties. This article is a systematic review that explains this promising research area, commonly known as controllable deep data generation. First, the article raises the potential challenges and provides preliminaries. Then the article formally defines controllable deep data generation, proposes a taxonomy on various techniques and summarizes the evaluation metrics in this specific domain. After that, the article introduces exciting applications of controllable deep data generation, experimentally analyzes and compares existing works. Finally, this article highlights the promising future directions of controllable deep data generation and identifies five potential challenges.
- Abstract(参考訳): 分子設計や画像編集,音声合成などの重要な応用が注目されている。
従来の手作りのアプローチは、専門的な経験と集中的な人間の努力に大きく依存しているが、効率的で効率的なデータ生成をサポートするための科学的知識と低スループットの不足に悩まされている。
近年,深層学習の進歩は,データの表現と特性を表現的手法で学習する機会を生み出している。
このような能力は、データの構造的パターンと機能的特性の間の相互関係を決定する新しい方法を提供する。
この記事では、制御可能な深層データ生成として知られるこの将来性のある研究領域について、体系的なレビューを行う。
まず、この記事は潜在的な課題を提起し、予備機能を提供します。
次に、制御可能な深層データ生成を正式に定義し、様々な技術に関する分類を提案し、この特定の領域における評価指標を要約する。
その後、制御可能な深層データ生成のエキサイティングな応用を紹介し、既存の研究を実験的に分析し比較する。
最後に、制御可能な深層データ生成の将来的な方向性を強調し、潜在的な5つの課題を特定します。
関連論文リスト
- Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfakeは、特定の条件下で非常にリアルな顔画像やビデオを作成するための技術だ。
この調査は、ディープフェイクの発生と検出の最新の展開を包括的にレビューする。
本研究では, 顔交換, 顔再現, 話し顔生成, 顔属性編集の4つの代表的なディープフェイク分野の研究に焦点をあてる。
論文 参考訳(メタデータ) (2024-03-26T17:12:34Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - A Systematic Review of Data-to-Text NLG [2.4769539696439677]
高品質なテキストを生成する手法を探索し、テキスト生成における幻覚の課題に対処する。
テキスト品質の進歩にもかかわらず、このレビューは低リソース言語における研究の重要性を強調している。
論文 参考訳(メタデータ) (2024-02-13T14:51:45Z) - Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
自然言語は、人間が機械とシームレスに対話するための共通かつ直接的な制御信号として機能する。
ラベルのないデータを用いて教師なし拡散モデルを用いて基礎となるデータ分布を理解する新しいアプローチであるText2Dataを提案する。
制御性を確保し、破滅的な忘れを効果的に防止する、新しい制約最適化ベースの学習目標を通じて制御可能な微調整を行う。
論文 参考訳(メタデータ) (2024-02-08T03:41:39Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
本研究では,Large Language Models (LLMs) を用いてデータの洞察の発見を自動化する可能性について検討する。
そこで本稿では,データセット内の意味的かつ関連する情報(フラグ)を識別する能力を測定するために,フラグを捕捉する原理に基づく新しい評価手法を提案する。
論文 参考訳(メタデータ) (2023-12-21T14:20:06Z) - Data Optimization in Deep Learning: A Survey [3.1274367448459253]
本研究の目的は,ディープラーニングのための様々なデータ最適化手法を整理することである。
構築された分類学は分割次元の多様性を考慮し、各次元に深いサブタコノミが構築される。
構築された分類学と明らかにされた接続は、既存の手法のより良い理解と、新しいデータ最適化手法の設計を啓蒙する。
論文 参考訳(メタデータ) (2023-10-25T09:33:57Z) - Deep Generative Models, Synthetic Tabular Data, and Differential
Privacy: An Overview and Synthesis [2.8391355909797644]
本稿では, 深層生成モデルによる合成データ生成の最近の進展を包括的に分析する。
具体的には、プライバシーに敏感なデータにおける合成データ生成の重要性について概説する。
論文 参考訳(メタデータ) (2023-07-28T09:17:03Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
構造に基づく薬物設計(SBDD)は、タンパク質の3次元幾何学を利用して、潜在的な薬物候補を特定する。
近年の幾何学的深層学習の進歩は、3次元幾何学的データを効果的に統合・処理し、この分野を前進させてきた。
論文 参考訳(メタデータ) (2023-06-20T14:21:58Z) - Machine Learning for Synthetic Data Generation: A Review [23.073056971997715]
本稿では,合成データの生成を目的とした機械学習モデルを用いた既存研究についてレビューする。
このレビューは、合成データ生成、コンピュータビジョン、スピーチ、自然言語処理、ヘルスケア、ビジネスドメインの応用から始まる様々な視点を網羅している。
この論文は、合成データ生成に関するプライバシーと公平性に関する重要な側面についても論じている。
論文 参考訳(メタデータ) (2023-02-08T13:59:31Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
機械学習(ML)に加速された発見は、予測構造とプロパティの関係を明らかにするために大量の高忠実度データを必要とする。
材料発見に関心を持つ多くの特性において、データ生成の挑戦的な性質と高いコストは、人口が少なく、疑わしい品質を持つデータランドスケープを生み出している。
手作業によるキュレーションがなければ、より洗練された自然言語処理と自動画像解析により、文献から構造-プロパティ関係を学習できるようになる。
論文 参考訳(メタデータ) (2021-11-02T21:43:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。