論文の概要: Data Optimization in Deep Learning: A Survey
- arxiv url: http://arxiv.org/abs/2310.16499v1
- Date: Wed, 25 Oct 2023 09:33:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-26 15:34:23.202239
- Title: Data Optimization in Deep Learning: A Survey
- Title(参考訳): ディープラーニングにおけるデータ最適化:調査
- Authors: Ou Wu and Rujing Yao
- Abstract要約: 本研究の目的は,ディープラーニングのための様々なデータ最適化手法を整理することである。
構築された分類学は分割次元の多様性を考慮し、各次元に深いサブタコノミが構築される。
構築された分類学と明らかにされた接続は、既存の手法のより良い理解と、新しいデータ最適化手法の設計を啓蒙する。
- 参考スコア(独自算出の注目度): 3.1274367448459253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large-scale, high-quality data are considered an essential factor for the
successful application of many deep learning techniques. Meanwhile, numerous
real-world deep learning tasks still have to contend with the lack of
sufficient amounts of high-quality data. Additionally, issues such as model
robustness, fairness, and trustworthiness are also closely related to training
data. Consequently, a huge number of studies in the existing literature have
focused on the data aspect in deep learning tasks. Some typical data
optimization techniques include data augmentation, logit perturbation, sample
weighting, and data condensation. These techniques usually come from different
deep learning divisions and their theoretical inspirations or heuristic
motivations may seem unrelated to each other. This study aims to organize a
wide range of existing data optimization methodologies for deep learning from
the previous literature, and makes the effort to construct a comprehensive
taxonomy for them. The constructed taxonomy considers the diversity of split
dimensions, and deep sub-taxonomies are constructed for each dimension. On the
basis of the taxonomy, connections among the extensive data optimization
methods for deep learning are built in terms of four aspects. We probe into
rendering several promising and interesting future directions. The constructed
taxonomy and the revealed connections will enlighten the better understanding
of existing methods and the design of novel data optimization techniques.
Furthermore, our aspiration for this survey is to promote data optimization as
an independent subdivision of deep learning. A curated, up-to-date list of
resources related to data optimization in deep learning is available at
\url{https://github.com/YaoRujing/Data-Optimization}.
- Abstract(参考訳): 大規模で高品質なデータは、多くのディープラーニング技術の応用に欠かせない要素であると考えられている。
一方で、多くの現実世界のディープラーニングタスクは、十分な量の高品質なデータが不足していることと相容れない。
さらに、モデルの堅牢性、公正性、信頼性といった問題も、トレーニングデータと密接に関連している。
その結果、既存の文献における多くの研究は、ディープラーニングタスクにおけるデータ側面に焦点を当てている。
典型的なデータ最適化技術には、データ拡張、ロジット摂動、サンプル重み付け、データ凝縮などがある。
これらのテクニックは通常、異なる深層学習部門から生まれ、理論的なインスピレーションやヒューリスティックなモチベーションは互いに無関係に思える。
本研究は,従来の文献からの深層学習のための多様なデータ最適化手法を整理し,それらを包括的に分類することを目的としている。
構築された分類学は分割次元の多様性を考慮し、各次元に深いサブタコノミが構築される。
この分類に基づいて,深層学習のための広範囲データ最適化手法間の接続を4つの側面から構築する。
我々はいくつかの将来有望で興味深い方向を描いている。
構築された分類学と明らかにされた接続は、既存の手法のより良い理解と新しいデータ最適化手法の設計を啓蒙する。
さらに,本調査の目的は,深層学習の独立した部門としてデータ最適化を促進することである。
ディープラーニングのデータ最適化に関連するリソースのキュレーションされた最新リストは、 \url{https://github.com/yaorujing/data-optimization}で見ることができる。
関連論文リスト
- A Survey on Data Synthesis and Augmentation for Large Language Models [35.59526251210408]
本稿では,大規模言語モデルのライフサイクルを通じてデータ生成手法をレビューし,要約する。
これらの手法が直面する現在の制約について考察し,今後の開発・研究の道筋について考察する。
論文 参考訳(メタデータ) (2024-10-16T16:12:39Z) - A Comprehensive Survey on Data Augmentation [55.355273602421384]
データ拡張(Data augmentation)は、既存のデータサンプルを操作することによって高品質な人工データを生成する技術である。
既存の文献調査では、特定のモダリティデータにのみ焦点が当てられている。
本稿では,異なる共通データモダリティのためのデータ拡張技術を含む,より啓蒙的な分類法を提案する。
論文 参考訳(メタデータ) (2024-05-15T11:58:08Z) - A Survey on Data Selection for Language Models [148.300726396877]
データ選択方法は、トレーニングデータセットに含まれるデータポイントを決定することを目的としている。
ディープラーニングは、主に実証的な証拠によって駆動され、大規模なデータに対する実験は高価である。
広範なデータ選択研究のリソースを持つ組織はほとんどない。
論文 参考訳(メタデータ) (2024-02-26T18:54:35Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
本稿では,データの影響を推定し,命令データ選択のための低ランクグレーディエント類似度探索を行うアルゴリズムであるLESSを提案する。
LESS選択したデータの5%のトレーニングは、さまざまなダウンストリームタスクにわたる完全なデータセットでのトレーニングよりも優れています。
我々の方法は、意図した下流アプリケーションに必要な推論スキルを識別するために、表面的なフォームキューを超えています。
論文 参考訳(メタデータ) (2024-02-06T19:18:04Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - A Comprehensive Survey of Dataset Distillation [73.15482472726555]
限られた計算能力で無制限に成長するデータを扱うことは困難になっている。
ディープラーニング技術はこの10年で前例のない発展を遂げた。
本稿では,多面的なデータセット蒸留の総合的な理解を提供する。
論文 参考訳(メタデータ) (2023-01-13T15:11:38Z) - A Survey of Learning on Small Data: Generalization, Optimization, and
Challenge [101.27154181792567]
ビッグデータの一般化能力を近似した小さなデータについて学ぶことは、AIの究極の目的の1つである。
この調査はPACフレームワークの下でのアクティブサンプリング理論に従い、小さなデータにおける学習の一般化誤差とラベルの複雑さを分析した。
効率的な小さなデータ表現の恩恵を受けるかもしれない複数のデータアプリケーションについて調査する。
論文 参考訳(メタデータ) (2022-07-29T02:34:19Z) - Data Augmentation techniques in time series domain: A survey and
taxonomy [0.20971479389679332]
時系列を扱うディープニューラルネットワークは、トレーニングで使用されるデータセットのサイズと一貫性に大きく依存する。
この研究は、すべての利用可能なアルゴリズムの概要を提供するために、この分野の最先端を体系的にレビューする。
本研究の究極的な目的は、この分野の将来の研究者を導くために、より良い結果をもたらす領域の進化と性能を概説することである。
論文 参考訳(メタデータ) (2022-06-25T17:09:00Z) - Deep Depth Completion: A Survey [26.09557446012222]
我々は、読者が研究動向をよりよく把握し、現在の進歩を明確に理解するのに役立つ総合的な文献レビューを提供する。
ネットワークアーキテクチャ,損失関数,ベンチマークデータセット,学習戦略の設計面から,関連する研究について検討する。
室内および屋外のデータセットを含む,広く使用されている2つのベンチマークデータセットに対して,モデル性能の定量的比較を行った。
論文 参考訳(メタデータ) (2022-05-11T08:24:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。