Controllable Data Generation by Deep Learning: A Review
- URL: http://arxiv.org/abs/2207.09542v6
- Date: Mon, 18 Mar 2024 06:06:48 GMT
- Title: Controllable Data Generation by Deep Learning: A Review
- Authors: Shiyu Wang, Yuanqi Du, Xiaojie Guo, Bo Pan, Zhaohui Qin, Liang Zhao,
- Abstract summary: controllable deep data generation is a promising research area, commonly known as controllable deep data generation.
This article introduces exciting applications of controllable deep data generation, experimentally analyzes and compares existing works.
- Score: 22.582082771890974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning has created the opportunity for expressive methods to learn the underlying representation and properties of data. Such capability provides new ways of determining the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationships to generate structural data, given the desired properties. This article is a systematic review that explains this promising research area, commonly known as controllable deep data generation. First, the article raises the potential challenges and provides preliminaries. Then the article formally defines controllable deep data generation, proposes a taxonomy on various techniques and summarizes the evaluation metrics in this specific domain. After that, the article introduces exciting applications of controllable deep data generation, experimentally analyzes and compares existing works. Finally, this article highlights the promising future directions of controllable deep data generation and identifies five potential challenges.
Related papers
- Deepfake Generation and Detection: A Benchmark and Survey [134.19054491600832]
Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
arXiv Detail & Related papers (2024-03-26T17:12:34Z) - A Survey on Data Selection for Language Models [148.300726396877]
Data selection methods aim to determine which data points to include in a training dataset.
Deep learning is mostly driven by empirical evidence and experimentation on large-scale data is expensive.
Few organizations have the resources for extensive data selection research.
arXiv Detail & Related papers (2024-02-26T18:54:35Z) - A Systematic Review of Data-to-Text NLG [2.4769539696439677]
Methods for producing high-quality text are explored, addressing the challenge of hallucinations in data-to-text generation.
Despite advancements in text quality, the review emphasizes the importance of research in low-resourced languages.
arXiv Detail & Related papers (2024-02-13T14:51:45Z) - Text2Data: Low-Resource Data Generation with Textual Control [104.38011760992637]
Natural language serves as a common and straightforward control signal for humans to interact seamlessly with machines.
We propose Text2Data, a novel approach that utilizes unlabeled data to understand the underlying data distribution through an unsupervised diffusion model.
It undergoes controllable finetuning via a novel constraint optimization-based learning objective that ensures controllability and effectively counteracts catastrophic forgetting.
arXiv Detail & Related papers (2024-02-08T03:41:39Z) - Capture the Flag: Uncovering Data Insights with Large Language Models [90.47038584812925]
This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data.
We propose a new evaluation methodology based on a "capture the flag" principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset.
arXiv Detail & Related papers (2023-12-21T14:20:06Z) - Data Optimization in Deep Learning: A Survey [3.1274367448459253]
This study aims to organize a wide range of existing data optimization methodologies for deep learning.
The constructed taxonomy considers the diversity of split dimensions, and deep sub-taxonomies are constructed for each dimension.
The constructed taxonomy and the revealed connections will enlighten the better understanding of existing methods and the design of novel data optimization techniques.
arXiv Detail & Related papers (2023-10-25T09:33:57Z) - Deep Generative Models, Synthetic Tabular Data, and Differential
Privacy: An Overview and Synthesis [2.8391355909797644]
This article provides a comprehensive synthesis of the recent developments in synthetic data generation via deep generative models.
We specifically outline the importance of synthetic data generation in the context of privacy-sensitive data.
arXiv Detail & Related papers (2023-07-28T09:17:03Z) - Geometric Deep Learning for Structure-Based Drug Design: A Survey [83.87489798671155]
Structure-based drug design (SBDD) leverages the three-dimensional geometry of proteins to identify potential drug candidates.
Recent advancements in geometric deep learning, which effectively integrate and process 3D geometric data, have significantly propelled the field forward.
arXiv Detail & Related papers (2023-06-20T14:21:58Z) - Machine Learning for Synthetic Data Generation: A Review [23.073056971997715]
This paper reviews existing studies that employ machine learning models for the purpose of generating synthetic data.
The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains.
The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation.
arXiv Detail & Related papers (2023-02-08T13:59:31Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Audacity of huge: overcoming challenges of data scarcity and data
quality for machine learning in computational materials discovery [1.0036312061637764]
Machine learning (ML)-accelerated discovery requires large amounts of high-fidelity data to reveal predictive structure-property relationships.
For many properties of interest in materials discovery, the challenging nature and high cost of data generation has resulted in a data landscape that is scarcely populated and of dubious quality.
In the absence of manual curation, increasingly sophisticated natural language processing and automated image analysis are making it possible to learn structure-property relationships from the literature.
arXiv Detail & Related papers (2021-11-02T21:43:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.