Deepfake Generation and Detection: A Benchmark and Survey
- URL: http://arxiv.org/abs/2403.17881v4
- Date: Thu, 16 May 2024 10:38:58 GMT
- Title: Deepfake Generation and Detection: A Benchmark and Survey
- Authors: Gan Pei, Jiangning Zhang, Menghan Hu, Zhenyu Zhang, Chengjie Wang, Yunsheng Wu, Guangtao Zhai, Jian Yang, Chunhua Shen, Dacheng Tao,
- Abstract summary: Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions.
This survey comprehensively reviews the latest developments in deepfake generation and detection.
We focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing.
- Score: 134.19054491600832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfake is a technology dedicated to creating highly realistic facial images and videos under specific conditions, which has significant application potential in fields such as entertainment, movie production, digital human creation, to name a few. With the advancements in deep learning, techniques primarily represented by Variational Autoencoders and Generative Adversarial Networks have achieved impressive generation results. More recently, the emergence of diffusion models with powerful generation capabilities has sparked a renewed wave of research. In addition to deepfake generation, corresponding detection technologies continuously evolve to regulate the potential misuse of deepfakes, such as for privacy invasion and phishing attacks. This survey comprehensively reviews the latest developments in deepfake generation and detection, summarizing and analyzing current state-of-the-arts in this rapidly evolving field. We first unify task definitions, comprehensively introduce datasets and metrics, and discuss developing technologies. Then, we discuss the development of several related sub-fields and focus on researching four representative deepfake fields: face swapping, face reenactment, talking face generation, and facial attribute editing, as well as forgery detection. Subsequently, we comprehensively benchmark representative methods on popular datasets for each field, fully evaluating the latest and influential published works. Finally, we analyze challenges and future research directions of the discussed fields.
Related papers
- State-of-the-art AI-based Learning Approaches for Deepfake Generation and Detection, Analyzing Opportunities, Threading through Pros, Cons, and Future Prospects [0.0]
Deepfake technologies are designed to create incredibly lifelike facial imagery and video content.
This review paper meticulously investigates the most recent developments in deepfake generation and detection, including around 400 publications.
arXiv Detail & Related papers (2025-01-02T03:19:21Z) - Deepfake Media Generation and Detection in the Generative AI Era: A Survey and Outlook [101.30779332427217]
We survey deepfake generation and detection techniques, including the most recent developments in the field.
We identify various kinds of deepfakes, according to the procedure used to alter or generate the fake content.
We develop a novel multimodal benchmark to evaluate deepfake detectors on out-of-distribution content.
arXiv Detail & Related papers (2024-11-29T08:29:25Z) - Deep Learning Technology for Face Forgery Detection: A Survey [17.519617618071003]
Deep learning has enabled the creation or manipulation of high-fidelity facial images and videos.
This technology, also known as deepfake, has achieved dramatic progress and become increasingly popular in social media.
To diminish the risks of deepfake, it is desirable to develop powerful forgery detection methods.
arXiv Detail & Related papers (2024-09-22T01:42:01Z) - Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AI-generated synthetic media, also called Deepfakes, have influenced so many domains, from entertainment to cybersecurity.
Deepfake detection has become a vital area of research, focusing on identifying subtle inconsistencies and artifacts with machine learning techniques.
This paper reviews the primary algorithms that address these challenges, examining their advantages, limitations, and future prospects.
arXiv Detail & Related papers (2024-08-01T08:57:47Z) - The Tug-of-War Between Deepfake Generation and Detection [4.62070292702111]
Multimodal generative models are rapidly evolving, leading to a surge in the generation of realistic video and audio.
Deepfake videos, which can convincingly impersonate individuals, have particularly garnered attention due to their potential misuse.
This survey paper examines the dual landscape of deepfake video generation and detection, emphasizing the need for effective countermeasures.
arXiv Detail & Related papers (2024-07-08T17:49:41Z) - Evolving from Single-modal to Multi-modal Facial Deepfake Detection: A Survey [40.11614155244292]
As AI-generated media become more realistic, the risk of misuse to spread misinformation and commit identity fraud increases.
This work traces the evolution from traditional single-modality methods to sophisticated multi-modal approaches that handle audio-visual and text-visual scenarios.
To our knowledge, this is the first survey of its kind.
arXiv Detail & Related papers (2024-06-11T05:48:04Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Deep Person Generation: A Survey from the Perspective of Face, Pose and
Cloth Synthesis [55.72674354651122]
We first summarize the scope of person generation, then systematically review recent progress and technical trends in deep person generation.
More than two hundred papers are covered for a thorough overview, and the milestone works are highlighted to witness the major technical breakthrough.
We hope this survey could shed some light on the future prospects of deep person generation, and provide a helpful foundation for full applications towards digital human.
arXiv Detail & Related papers (2021-09-05T14:15:24Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
Photorealistic image generation has reached a new level of quality due to the breakthroughs of generative adversarial networks (GANs)
Yet, the dark side of such deepfakes, the malicious use of generated media, raises concerns about visual misinformation.
We seek a proactive and sustainable solution on deepfake detection by introducing artificial fingerprints into the models.
arXiv Detail & Related papers (2020-07-16T16:49:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.