論文の概要: Sample Efficient Learning of Predictors that Complement Humans
- arxiv url: http://arxiv.org/abs/2207.09584v1
- Date: Tue, 19 Jul 2022 23:19:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-21 13:03:56.512433
- Title: Sample Efficient Learning of Predictors that Complement Humans
- Title(参考訳): 人間を補完する予測者のサンプル学習
- Authors: Mohammad-Amin Charusaie, Hussein Mozannar, David Sontag, Samira Samadi
- Abstract要約: 我々は、専門家の推論における補完的予測子の学習の利点を初めて理論的に分析する。
我々は、人間の専門家予測の最小限のデータを必要とするアクティブな学習スキームを設計する。
- 参考スコア(独自算出の注目度): 5.830619388189559
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the goals of learning algorithms is to complement and reduce the
burden on human decision makers. The expert deferral setting wherein an
algorithm can either predict on its own or defer the decision to a downstream
expert helps accomplish this goal. A fundamental aspect of this setting is the
need to learn complementary predictors that improve on the human's weaknesses
rather than learning predictors optimized for average error. In this work, we
provide the first theoretical analysis of the benefit of learning complementary
predictors in expert deferral. To enable efficiently learning such predictors,
we consider a family of consistent surrogate loss functions for expert deferral
and analyze their theoretical properties. Finally, we design active learning
schemes that require minimal amount of data of human expert predictions in
order to learn accurate deferral systems.
- Abstract(参考訳): 学習アルゴリズムの目標の1つは、人間の意思決定者の負担を補完し軽減することである。
アルゴリズムが自分自身で予測するか、ダウンストリームの専門家に決定を延期することで、この目標を達成することができる。
この設定の基本的な側面は、平均誤差に最適化された予測子を学習するのではなく、人間の弱点を改善する補完的な予測子を学ぶ必要があることである。
本研究は,専門家の推論における補完的予測子の学習のメリットに関する,最初の理論的分析である。
このような予測関数を効率的に学習するために、専門家の推論に対する一貫した代理損失関数の族を考え、それらの理論的性質を解析する。
最後に,人間の専門家による予測の少ないデータを必要とする能動的学習方式を設計し,正確な推論系を学習する。
関連論文リスト
- Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
アルゴリズム設計の最近の進歩は、過去のデータと現在のデータから得られた機械学習モデルによる予測の活用方法を示している。
この文脈における以前の研究は、予測器が過去のデータに基づいて事前訓練され、ブラックボックスとして使用されるパラダイムに焦点を当てていた。
本研究では,予測器を解き,アルゴリズムの課題の中で生じる学習問題を統合する。
論文 参考訳(メタデータ) (2024-03-12T08:40:21Z) - Modeling of learning curves with applications to pos tagging [0.27624021966289597]
トレーニングベース全体の学習曲線の進化を推定するアルゴリズムを導入する。
学習手法とは無関係に,所望のタイミングで探索値を反復的に近似する。
本提案は, 作業仮説に関して正式に正しいことを証明し, 信頼性の高い近接条件を含む。
論文 参考訳(メタデータ) (2024-02-04T15:00:52Z) - Learning to Defer with Limited Expert Predictions [0.0]
本稿では,アルゴリズムを遅延させる学習訓練に必要な専門家予測数を3段階に短縮する手法を提案する。
実験の結果,この手法により,人間専門家の予測が最小限に抑えられたアルゴリズムを,様々な学習の訓練で遅延させることができることがわかった。
論文 参考訳(メタデータ) (2023-04-14T09:22:34Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
強化学習のための自己予測学習の学習ダイナミクスについて検討する。
本稿では,2つの表現を同時に学習する新しい自己予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-06T20:43:37Z) - What Should I Know? Using Meta-gradient Descent for Predictive Feature
Discovery in a Single Stream of Experience [63.75363908696257]
計算強化学習は、未来の感覚の予測を通じて、エージェントの世界の知覚を構築しようとする。
この一連の作業において、オープンな課題は、エージェントがどの予測が意思決定を最も支援できるかを、無限に多くの予測から決定することである。
本稿では,エージェントが何を予測するかを学習するメタ段階的な降下過程,(2)選択した予測の見積もり,3)将来の報酬を最大化するポリシーを生成する方法を紹介する。
論文 参考訳(メタデータ) (2022-06-13T21:31:06Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
予測器を学習するアルゴリズムに対して,一般的な設計手法を導入する。
オンライン学習の手法を応用して、敵のインスタンスに対して学習し、堅牢性と一貫性のあるトレードオフを調整し、新しい統計的保証を得る。
両部マッチング,ページマイグレーション,スキーレンタル,ジョブスケジューリングの手法を解析することにより,学習アルゴリズムの導出におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-18T17:25:43Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
慎重に設計されたシステムであっても、補完的な性能はあり得ないことを示す。
まず,簡単な人間アルゴリズムをモデル化するための理論的枠組みを提案する。
次に、このモデルを用いて相補性が不可能な条件を証明する。
論文 参考訳(メタデータ) (2022-02-17T18:44:41Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
プラグイン推定と擬似出力回帰に依存する4つの幅広いメタ学習戦略を解析する。
この理論的推論を用いて、アルゴリズム設計の原則を導出し、分析を実践に翻訳する方法について強調する。
論文 参考訳(メタデータ) (2021-01-26T17:11:40Z) - Consistent Estimators for Learning to Defer to an Expert [5.076419064097734]
我々は、意思決定を下流の専門家に延期するか、予測するか選択できる予測器の学習方法を示す。
様々な実験課題に対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-06-02T18:21:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。