論文の概要: Non-Uniform Diffusion Models
- arxiv url: http://arxiv.org/abs/2207.09786v1
- Date: Wed, 20 Jul 2022 09:59:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-21 14:01:47.661358
- Title: Non-Uniform Diffusion Models
- Title(参考訳): 非一様拡散モデル
- Authors: Georgios Batzolis, Jan Stanczuk, Carola-Bibiane Sch\"onlieb, Christian
Etmann
- Abstract要約: 非一様拡散は、マルチスケール正規化フローと似た構造を持つマルチスケール拡散モデルをもたらすことを示す。
実験により, 同一あるいは少ないトレーニング時間において, マルチスケール拡散モデルでは, 標準均一拡散モデルよりも優れたFIDスコアが得られることがわかった。
また, 非一様拡散は, 条件付きスコア関数に対して, 最先端の条件付きデノナイジング推定器と同等の性能を達成するための新しい推定器となることを示す。
- 参考スコア(独自算出の注目度): 0.8602553195689513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models have emerged as one of the most promising frameworks for
deep generative modeling. In this work, we explore the potential of non-uniform
diffusion models. We show that non-uniform diffusion leads to multi-scale
diffusion models which have similar structure to this of multi-scale
normalizing flows. We experimentally find that in the same or less training
time, the multi-scale diffusion model achieves better FID score than the
standard uniform diffusion model. More importantly, it generates samples $4.4$
times faster in $128\times 128$ resolution. The speed-up is expected to be
higher in higher resolutions where more scales are used. Moreover, we show that
non-uniform diffusion leads to a novel estimator for the conditional score
function which achieves on par performance with the state-of-the-art
conditional denoising estimator. Our theoretical and experimental findings are
accompanied by an open source library MSDiff which can facilitate further
research of non-uniform diffusion models.
- Abstract(参考訳): 拡散モデルは、深層生成モデリングの最も有望なフレームワークの1つである。
本研究では,非一様拡散モデルの可能性について考察する。
非一様拡散は多スケール正規化流のそれと同様の構造を持つ多スケール拡散モデルをもたらすことを示す。
実験により, 実験により, 多スケール拡散モデルでは, 標準一様拡散モデルよりもfidスコアが良好であることが判明した。
さらに重要なのは、128\times 128$の解像度でサンプルを生成することだ。
スピードアップは、より多くのスケールが使用される高解像度でより高いと期待されている。
さらに,非一様拡散は条件付スコア関数の新たな推定子となり,最先端条件付推定量と同等の性能が得られることを示した。
非一様拡散モデルのさらなる研究を容易にするオープンソースライブラリMSDiffを伴って、理論的および実験的研究を行った。
関連論文リスト
- An Overview of Diffusion Models: Applications, Guided Generation, Statistical Rates and Optimization [59.63880337156392]
拡散モデルはコンピュータビジョン、オーディオ、強化学習、計算生物学において大きな成功を収めた。
経験的成功にもかかわらず、拡散モデルの理論は非常に限定的である。
本稿では,前向きな理論や拡散モデルの手法を刺激する理論的露光について述べる。
論文 参考訳(メタデータ) (2024-04-11T14:07:25Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
同じスタートノイズ入力と決定論的サンプリングが与えられた場合、異なる拡散モデルはしばしば驚くほど類似した出力が得られる。
拡散モデルはトレーニングデータサイズの影響を受けやすい分布を学習していることを示す。
この価値ある性質は、条件付き使用、逆問題解決、モデル微調整など、拡散モデルの多くの変種に一般化される。
論文 参考訳(メタデータ) (2023-10-08T19:02:46Z) - Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models [76.46246743508651]
我々は,現在の拡散モデルが後方認知において表現力のあるボトルネックを持っていることを示した。
本稿では,後方復調のための表現的かつ効率的なモデルであるソフトミキシング・デノナイジング(SMD)を導入する。
論文 参考訳(メタデータ) (2023-09-25T12:03:32Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
関係領域で独立に訓練された2つの拡散モデルから共通潜時空間が現れることを示す。
テキスト・画像拡散モデルにCycleDiffusionを適用することで、大規模なテキスト・画像拡散モデルがゼロショット画像・画像拡散エディタとして使用できることを示す。
論文 参考訳(メタデータ) (2022-10-11T15:53:52Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
そこで本研究では,分類器を含まない誘導拡散モデルから抽出し易いモデルへ抽出する手法を提案する。
画素空間上で訓練された標準拡散モデルに対して,本手法は元のモデルに匹敵する画像を生成することができる。
遅延空間で訓練された拡散モデル(例えば、安定拡散)に対して、我々の手法は1から4段階のデノナイジングステップで高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:03:56Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。