論文の概要: Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models
- arxiv url: http://arxiv.org/abs/2309.14068v3
- Date: Thu, 18 Jan 2024 18:16:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 20:10:39.550993
- Title: Soft Mixture Denoising: Beyond the Expressive Bottleneck of Diffusion
Models
- Title(参考訳): ソフト混合分別:拡散モデルの表現的ボトルネックを超えて
- Authors: Yangming Li, Boris van Breugel, Mihaela van der Schaar
- Abstract要約: 我々は,現在の拡散モデルが後方認知において表現力のあるボトルネックを持っていることを示した。
本稿では,後方復調のための表現的かつ効率的なモデルであるソフトミキシング・デノナイジング(SMD)を導入する。
- 参考スコア(独自算出の注目度): 76.46246743508651
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Because diffusion models have shown impressive performances in a number of
tasks, such as image synthesis, there is a trend in recent works to prove (with
certain assumptions) that these models have strong approximation capabilities.
In this paper, we show that current diffusion models actually have an
expressive bottleneck in backward denoising and some assumption made by
existing theoretical guarantees is too strong. Based on this finding, we prove
that diffusion models have unbounded errors in both local and global denoising.
In light of our theoretical studies, we introduce soft mixture denoising (SMD),
an expressive and efficient model for backward denoising. SMD not only permits
diffusion models to well approximate any Gaussian mixture distributions in
theory, but also is simple and efficient for implementation. Our experiments on
multiple image datasets show that SMD significantly improves different types of
diffusion models (e.g., DDPM), espeically in the situation of few backward
iterations.
- Abstract(参考訳): 拡散モデルは画像合成などの多くのタスクで印象的な性能を示しているため、これらのモデルが強い近似能力を持っていることを(ある仮定で)証明する最近の研究のトレンドがある。
本稿では,現行の拡散モデルが後方認知における表現的ボトルネックを実際に有しており,既存の理論的保証による仮定が強すぎることを示す。
この結果から,拡散モデルが局所的および大域的認知の双方において非有界誤差を持つことを示す。
理論的研究を踏まえ, 後方復調のための表現的かつ効率的なモデルであるソフトミキシング(SMD)を導入する。
SMDは拡散モデルに理論上の任意のガウス混合分布をうまく近似させるだけでなく、実装にもシンプルで効率的である。
複数の画像データセットを用いた実験により,smdは様々な種類の拡散モデル(ddpmなど)を大幅に改善することが示された。
関連論文リスト
- Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Denoising Diffusion Probabilistic Models (DDPM)のような既存のモデルは、高品質で多様なサンプルを提供するが、本質的に多くの反復的なステップによって遅くなる。
暗黙的要因と明示的要因を一致させることにより、この問題に対処する新しいアプローチを導入する。
提案手法は拡散モデルに匹敵する生成性能と,少数のサンプリングステップを持つモデルに比較して非常に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2023-06-21T18:49:22Z) - Denoising Diffusion Samplers [41.796349001299156]
拡散モデルの認知は、多くの領域で最先端の結果を提供する生成モデルの一般的なクラスである。
我々は、非正規化確率密度関数から大まかにサンプリングし、それらの正規化定数を推定する類似のアイデアを探求する。
この文脈ではスコアマッチングは適用できないが、モンテカルロサンプリングのために生成的モデリングで導入された多くのアイデアを利用することができる。
論文 参考訳(メタデータ) (2023-02-27T14:37:16Z) - Information-Theoretic Diffusion [18.356162596599436]
拡散モデルのデノイングは密度モデリングや画像生成において大きな進歩をもたらした。
情報理論における古典的な結果にインスパイアされた拡散モデルのための新しい数学的基礎を導入する。
論文 参考訳(メタデータ) (2023-02-07T23:03:07Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Unifying Diffusion Models' Latent Space, with Applications to
CycleDiffusion and Guidance [95.12230117950232]
関係領域で独立に訓練された2つの拡散モデルから共通潜時空間が現れることを示す。
テキスト・画像拡散モデルにCycleDiffusionを適用することで、大規模なテキスト・画像拡散モデルがゼロショット画像・画像拡散エディタとして使用できることを示す。
論文 参考訳(メタデータ) (2022-10-11T15:53:52Z) - Diffusion Models in Vision: A Survey [80.82832715884597]
拡散モデルは、前方拡散段階と逆拡散段階の2つの段階に基づく深層生成モデルである。
拡散モデルは、既知の計算負荷にもかかわらず、生成したサンプルの品質と多様性に対して広く評価されている。
論文 参考訳(メタデータ) (2022-09-10T22:00:30Z) - Non-Uniform Diffusion Models [0.8602553195689513]
非一様拡散は、マルチスケール正規化フローと似た構造を持つマルチスケール拡散モデルをもたらすことを示す。
実験により, 同一あるいは少ないトレーニング時間において, マルチスケール拡散モデルでは, 標準均一拡散モデルよりも優れたFIDスコアが得られることがわかった。
また, 非一様拡散は, 条件付きスコア関数に対して, 最先端の条件付きデノナイジング推定器と同等の性能を達成するための新しい推定器となることを示す。
論文 参考訳(メタデータ) (2022-07-20T09:59:28Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Come-Closer-Diffuse-Faster: Accelerating Conditional Diffusion Models
for Inverse Problems through Stochastic Contraction [31.61199061999173]
拡散モデルには重要な欠点がある。純粋なガウスノイズから画像を生成するために数千ステップの反復を必要とするため、サンプリングが本質的に遅い。
ガウスノイズから始めることは不要であることを示す。代わりに、より優れた初期化を伴う単一前方拡散から始めると、逆条件拡散におけるサンプリングステップの数を大幅に減少させる。
ComeCloser-DiffuseFaster (CCDF)と呼ばれる新しいサンプリング戦略は、逆問題に対する既存のフィードフォワードニューラルネットワークアプローチが拡散モデルと相乗的に組み合わせられる方法について、新たな洞察を明らかにしている。
論文 参考訳(メタデータ) (2021-12-09T04:28:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。