Measuring and signing fairness as performance under multiple stakeholder
distributions
- URL: http://arxiv.org/abs/2207.09960v1
- Date: Wed, 20 Jul 2022 15:10:02 GMT
- Title: Measuring and signing fairness as performance under multiple stakeholder
distributions
- Authors: David Lopez-Paz, Diane Bouchacourt, Levent Sagun, Nicolas Usunier
- Abstract summary: Best tools for measuring the fairness of learning systems are rigid fairness metrics encapsulated as mathematical one-liners.
We propose to shift focus from shaping fairness metrics to curating the distributions of examples under which these are computed.
We provide full implementation guidelines for stress testing, illustrate both the benefits and shortcomings of this framework.
- Score: 39.54243229669015
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As learning machines increase their influence on decisions concerning human
lives, analyzing their fairness properties becomes a subject of central
importance. Yet, our best tools for measuring the fairness of learning systems
are rigid fairness metrics encapsulated as mathematical one-liners, offer
limited power to the stakeholders involved in the prediction task, and are easy
to manipulate when we exhort excessive pressure to optimize them. To advance
these issues, we propose to shift focus from shaping fairness metrics to
curating the distributions of examples under which these are computed. In
particular, we posit that every claim about fairness should be immediately
followed by the tagline "Fair under what examples, and collected by whom?". By
highlighting connections to the literature in domain generalization, we propose
to measure fairness as the ability of the system to generalize under multiple
stress tests -- distributions of examples with social relevance. We encourage
each stakeholder to curate one or multiple stress tests containing examples
reflecting their (possibly conflicting) interests. The machine passes or fails
each stress test by falling short of or exceeding a pre-defined metric value.
The test results involve all stakeholders in a discussion about how to improve
the learning system, and provide flexible assessments of fairness dependent on
context and based on interpretable data. We provide full implementation
guidelines for stress testing, illustrate both the benefits and shortcomings of
this framework, and introduce a cryptographic scheme to enable a degree of
prediction accountability from system providers.
Related papers
- Properties of fairness measures in the context of varying class imbalance and protected group ratios [15.942660279740727]
We study the general properties of fairness measures for changing class and protected group proportions.
We also measure how the probability of achieving perfect fairness changes for varying class imbalance ratios.
Our results show that measures such as Equal Opportunity and Positive Predictive Parity are more sensitive to changes in class imbalance than Accuracy Equality.
arXiv Detail & Related papers (2024-11-13T08:18:03Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Fair Few-shot Learning with Auxiliary Sets [53.30014767684218]
In many machine learning (ML) tasks, only very few labeled data samples can be collected, which can lead to inferior fairness performance.
In this paper, we define the fairness-aware learning task with limited training samples as the emphfair few-shot learning problem.
We devise a novel framework that accumulates fairness-aware knowledge across different meta-training tasks and then generalizes the learned knowledge to meta-test tasks.
arXiv Detail & Related papers (2023-08-28T06:31:37Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Understanding Instance-Level Impact of Fairness Constraints [12.866655972682254]
We study the influence of training examples when fairness constraints are imposed.
We find that training on a subset of weighty data examples leads to lower fairness violations with a trade-off of accuracy.
arXiv Detail & Related papers (2022-06-30T17:31:33Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Towards a Fairness-Aware Scoring System for Algorithmic Decision-Making [35.21763166288736]
We propose a general framework to create data-driven fairness-aware scoring systems.
We show that the proposed framework provides practitioners or policymakers great flexibility to select their desired fairness requirements.
arXiv Detail & Related papers (2021-09-21T09:46:35Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z) - Counterfactual Representation Learning with Balancing Weights [74.67296491574318]
Key to causal inference with observational data is achieving balance in predictive features associated with each treatment type.
Recent literature has explored representation learning to achieve this goal.
We develop an algorithm for flexible, scalable and accurate estimation of causal effects.
arXiv Detail & Related papers (2020-10-23T19:06:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.