論文の概要: Addressing Optimism Bias in Sequence Modeling for Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2207.10295v1
- Date: Thu, 21 Jul 2022 04:12:48 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-22 12:40:35.750519
- Title: Addressing Optimism Bias in Sequence Modeling for Reinforcement Learning
- Title(参考訳): 強化学習のためのシーケンスモデリングにおける最適バイアスへの対処
- Authors: Adam Villaflor, Zhe Huang, Swapnil Pande, John Dolan, Jeff Schneider
- Abstract要約: 最近の研究は、主に決定論的なオフラインAtariとD4RLベンチマークにおいて、最先端の結果を達成した。
本稿では,この楽観主義バイアスに対処する手法を提案する。
シミュレーションにおいて,様々な自律運転タスクにおいて,提案手法の優れた性能を示す。
- 参考スコア(独自算出の注目度): 5.09191791549438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Impressive results in natural language processing (NLP) based on the
Transformer neural network architecture have inspired researchers to explore
viewing offline reinforcement learning (RL) as a generic sequence modeling
problem. Recent works based on this paradigm have achieved state-of-the-art
results in several of the mostly deterministic offline Atari and D4RL
benchmarks. However, because these methods jointly model the states and actions
as a single sequencing problem, they struggle to disentangle the effects of the
policy and world dynamics on the return. Thus, in adversarial or stochastic
environments, these methods lead to overly optimistic behavior that can be
dangerous in safety-critical systems like autonomous driving. In this work, we
propose a method that addresses this optimism bias by explicitly disentangling
the policy and world models, which allows us at test time to search for
policies that are robust to multiple possible futures in the environment. We
demonstrate our method's superior performance on a variety of autonomous
driving tasks in simulation.
- Abstract(参考訳): Transformerニューラルネットワークアーキテクチャに基づく自然言語処理(NLP)の印象的な成果は、研究者に汎用的なシーケンスモデリング問題としてオフライン強化学習(RL)の視認を刺激している。
このパラダイムに基づく最近の研究は、主に決定論的オフラインのAtariとD4RLベンチマークで最先端の結果を得た。
しかし、これらの手法は単一シークエンシング問題として状態と動作を共同でモデル化するため、政策と世界ダイナミクスがリターンに与える影響を解き放つのに苦労する。
したがって、敵対的あるいは確率的な環境では、これらの手法は過度に楽観的な行動をもたらし、自動運転のような安全クリティカルなシステムでは危険である。
本研究では,この最適化バイアスに対処する手法を提案する。この手法は,環境における複数の将来性に対して堅牢なポリシーを,テスト時に探索することができる。
シミュレーションにおいて,様々な自律運転タスクにおいて,提案手法の優れた性能を示す。
関連論文リスト
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - SPO: Sequential Monte Carlo Policy Optimisation [41.52684912140086]
SPO:Sequential Monte Carlo Policy optimizationを紹介する。
我々は,SPOがロバストな政策改善と効率的なスケーリング特性を提供することを示した。
モデルフリーおよびモデルベースラインと比較して,統計的に有意な性能向上を示す。
論文 参考訳(メタデータ) (2024-02-12T10:32:47Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
本研究では,高次元観測による強化学習におけるオフライン事前学習とオンラインファインチューニングの問題について検討する。
既存のモデルベースオフラインRL法は高次元領域におけるオフラインからオンラインへの微調整には適していない。
本稿では,事前データをモデルベース値拡張とポリシー正則化によって効率的に再利用できるオンラインモデルベース手法を提案する。
論文 参考訳(メタデータ) (2024-01-06T21:04:31Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Online Nonstochastic Model-Free Reinforcement Learning [35.377261344335736]
本研究では,動的あるいは敵対的な環境に対するロバストモデルロバスト性保証について検討する。
これらのポリシーを最適化するための効率的かつ効率的なアルゴリズムを提供する。
これらは状態空間に依存せず、状態空間に依存しない最もよく知られた発展である。
論文 参考訳(メタデータ) (2023-05-27T19:02:55Z) - Model Generation with Provable Coverability for Offline Reinforcement
Learning [14.333861814143718]
動的対応ポリシーによるオフライン最適化は、ポリシー学習とアウト・オブ・ディストリビューションの一般化の新しい視点を提供する。
しかし、オフライン環境での制限のため、学習したモデルは実際のダイナミクスを十分に模倣することができず、信頼性の高いアウト・オブ・ディストリビューション探索をサポートできなかった。
本研究では,実力学のカバレッジを最適化するモデルを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-01T08:34:09Z) - Training and Evaluation of Deep Policies using Reinforcement Learning
and Generative Models [67.78935378952146]
GenRLはシーケンシャルな意思決定問題を解決するためのフレームワークである。
強化学習と潜在変数生成モデルの組み合わせを利用する。
最終方針訓練の性能に最も影響を与える生成モデルの特徴を実験的に決定する。
論文 参考訳(メタデータ) (2022-04-18T22:02:32Z) - Dream to Explore: Adaptive Simulations for Autonomous Systems [3.0664963196464448]
ベイズ的非パラメトリック法を適用し,力学系制御の学習に挑戦する。
ガウス過程を用いて潜在世界力学を探索することにより、強化学習で観測される一般的なデータ効率の問題を緩和する。
本アルゴリズムは,ログの変動的下界を最適化することにより,世界モデルと政策を共同で学習する。
論文 参考訳(メタデータ) (2021-10-27T04:27:28Z) - Learning Robust Controllers Via Probabilistic Model-Based Policy Search [2.886634516775814]
このような方法で学習したコントローラが、環境の小さな摂動の下で頑健であり、一般化できるかどうかを考察する。
ガウス過程のダイナミックスモデルにおける確率雑音に対する低拘束がポリシー更新を規則化し、より堅牢なコントローラが得られることを示す。
論文 参考訳(メタデータ) (2021-10-26T11:17:31Z) - COMBO: Conservative Offline Model-Based Policy Optimization [120.55713363569845]
ディープニューラルネットワークのような複雑なモデルによる不確実性推定は困難であり、信頼性が低い。
我々は,サポート外状態動作の値関数を正規化するモデルベースオフラインRLアルゴリズムCOMBOを開発した。
従来のオフラインモデルフリーメソッドやモデルベースメソッドと比べて、comboは一貫してパフォーマンスが良いことが分かりました。
論文 参考訳(メタデータ) (2021-02-16T18:50:32Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。