Enhancing Generative Networks for Chest Anomaly Localization through Automatic Registration-Based Unpaired-to-Pseudo-Paired Training Data Translation
- URL: http://arxiv.org/abs/2207.10324v3
- Date: Sun, 16 Jun 2024 02:52:15 GMT
- Title: Enhancing Generative Networks for Chest Anomaly Localization through Automatic Registration-Based Unpaired-to-Pseudo-Paired Training Data Translation
- Authors: Kyungsu Kim, Seong Je Oh, Chae Yeon Lim, Ju Hwan Lee, Tae Uk Kim, Myung Jin Chung,
- Abstract summary: generative adversarial network (GAN-IT) is a promising method for precise localization of abnormal regions in chest X-ray images (AL-CXR)
We propose an improved two-stage GAN-IT involving registration and data augmentation.
- Score: 4.562196564569076
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image translation based on a generative adversarial network (GAN-IT) is a promising method for the precise localization of abnormal regions in chest X-ray images (AL-CXR) even without the pixel-level annotation. However, heterogeneous unpaired datasets undermine existing methods to extract key features and distinguish normal from abnormal cases, resulting in inaccurate and unstable AL-CXR. To address this problem, we propose an improved two-stage GAN-IT involving registration and data augmentation. For the first stage, we introduce an advanced deep-learning-based registration technique that virtually and reasonably converts unpaired data into paired data for learning registration maps, by sequentially utilizing linear-based global and uniform coordinate transformation and AI-based non-linear coordinate fine-tuning. This approach enables independent and complex coordinate transformation of each detailed location of the lung while recognizing the entire lung structure, thereby achieving higher registration performance with resolving inherent artifacts caused by unpaired conditions. For the second stage, we apply data augmentation to diversify anomaly locations by swapping the left and right lung regions on the uniform registered frames, further improving the performance by alleviating imbalance in data distribution showing left and right lung lesions. The proposed method is model agnostic and shows consistent AL-CXR performance improvement in representative AI models. Therefore, we believe GAN-IT for AL-CXR can be clinically implemented by using our basis framework, even if learning data are scarce or difficult for the pixel-level disease annotation.
Related papers
- DPER: Diffusion Prior Driven Neural Representation for Limited Angle and Sparse View CT Reconstruction [45.00528216648563]
Diffusion Prior Driven Neural Representation (DPER) is an unsupervised framework designed to address the exceptionally ill-posed CT reconstruction inverse problems.
DPER adopts the Half Quadratic Splitting (HQS) algorithm to decompose the inverse problem into data fidelity and distribution prior sub-problems.
We conduct comprehensive experiments to evaluate the performance of DPER on LACT and ultra-SVCT reconstruction with two public datasets.
arXiv Detail & Related papers (2024-04-27T12:55:13Z) - BarlowTwins-CXR : Enhancing Chest X-Ray abnormality localization in
heterogeneous data with cross-domain self-supervised learning [1.7479385556004874]
"BarlwoTwins-CXR" is a self-supervised learning strategy for autonomic abnormality localization of chest X-ray image analysis.
The approach achieved a 3% increase in mAP50 accuracy compared to traditional ImageNet pre-trained models.
arXiv Detail & Related papers (2024-02-09T16:10:13Z) - Fully Differentiable Correlation-driven 2D/3D Registration for X-ray to CT Image Fusion [3.868072865207522]
Image-based rigid 2D/3D registration is a critical technique for fluoroscopic guided surgical interventions.
We propose a novel fully differentiable correlation-driven network using a dual-branch CNN-transformer encoder.
A correlation-driven loss is proposed for low-frequency feature and high-frequency feature decomposition based on embedded information.
arXiv Detail & Related papers (2024-02-04T14:12:51Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
This study presents an adversarial method for anomaly detection in real-world applications, leveraging the power of generative adversarial neural networks (GANs)
Previous methods suffer from the high variance between class-wise accuracy which leads to not being applicable for all types of anomalies.
The proposed method named RCALAD tries to solve this problem by introducing a novel discriminator to the structure, which results in a more efficient training process.
arXiv Detail & Related papers (2023-04-16T13:05:39Z) - Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer [60.31021888394358]
Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR)
We propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data.
arXiv Detail & Related papers (2023-03-31T03:14:44Z) - Adapting the Mean Teacher for keypoint-based lung registration under
geometric domain shifts [75.51482952586773]
deep neural networks generally require plenty of labeled training data and are vulnerable to domain shifts between training and test data.
We present a novel approach to geometric domain adaptation for image registration, adapting a model from a labeled source to an unlabeled target domain.
Our method consistently improves on the baseline model by 50%/47% while even matching the accuracy of models trained on target data.
arXiv Detail & Related papers (2022-07-01T12:16:42Z) - Affine Medical Image Registration with Coarse-to-Fine Vision Transformer [11.4219428942199]
We present a learning-based algorithm, Coarse-to-Fine Vision Transformer (C2FViT), for 3D affine medical image registration.
Our method is superior to the existing CNNs-based affine registration methods in terms of registration accuracy, robustness and generalizability.
arXiv Detail & Related papers (2022-03-29T03:18:43Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.