DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using
Unsupervised Domain-Classifier Guided Network
- URL: http://arxiv.org/abs/2207.10434v2
- Date: Sat, 5 Aug 2023 17:31:12 GMT
- Title: DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using
Unsupervised Domain-Classifier Guided Network
- Authors: Yeying Jin, Aashish Sharma, and Robby T. Tan
- Abstract summary: We propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet.
We introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness.
Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows.
- Score: 28.6541488555978
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Shadow removal from a single image is generally still an open problem. Most
existing learning-based methods use supervised learning and require a large
number of paired images (shadow and corresponding non-shadow images) for
training. A recent unsupervised method, Mask-ShadowGAN~\cite{Hu19}, addresses
this limitation. However, it requires a binary mask to represent shadow
regions, making it inapplicable to soft shadows. To address the problem, in
this paper, we propose an unsupervised domain-classifier guided shadow removal
network, DC-ShadowNet. Specifically, we propose to integrate a
shadow/shadow-free domain classifier into a generator and its discriminator,
enabling them to focus on shadow regions. To train our network, we introduce
novel losses based on physics-based shadow-free chromaticity, shadow-robust
perceptual features, and boundary smoothness. Moreover, we show that our
unsupervised network can be used for test-time training that further improves
the results. Our experiments show that all these novel components allow our
method to handle soft shadows, and also to perform better on hard shadows both
quantitatively and qualitatively than the existing state-of-the-art shadow
removal methods. Our code is available at:
\url{https://github.com/jinyeying/DC-ShadowNet-Hard-and-Soft-Shadow-Removal}.
Related papers
- SoftShadow: Leveraging Penumbra-Aware Soft Masks for Shadow Removal [35.16957947180504]
We introduce novel soft shadow masks specifically designed for shadow removal.
To achieve such soft masks, we propose a textitSoftShadow framework by leveraging the prior knowledge of pretrained SAM.
This framework enables accurate predictions of penumbra (partially shaded regions) and umbra (fully shaded regions) areas while simultaneously facilitating end-to-end shadow removal.
arXiv Detail & Related papers (2024-09-11T06:12:26Z) - Progressive Recurrent Network for Shadow Removal [99.1928825224358]
Single-image shadow removal is a significant task that is still unresolved.
Most existing deep learning-based approaches attempt to remove the shadow directly, which can not deal with the shadow well.
We propose a simple but effective Progressive Recurrent Network (PRNet) to remove the shadow progressively.
arXiv Detail & Related papers (2023-11-01T11:42:45Z) - ShaDocNet: Learning Spatial-Aware Tokens in Transformer for Document
Shadow Removal [53.01990632289937]
We propose a Transformer-based model for document shadow removal.
It uses shadow context encoding and decoding in both shadow and shadow-free regions.
arXiv Detail & Related papers (2022-11-30T01:46:29Z) - DeS3: Adaptive Attention-driven Self and Soft Shadow Removal using ViT Similarity [54.831083157152136]
We present a method that removes hard, soft and self shadows based on adaptive attention and ViT similarity.
Our method outperforms state-of-the-art methods on the SRD, AISTD, LRSS, USR and UIUC datasets.
arXiv Detail & Related papers (2022-11-15T12:15:29Z) - Shadow-Aware Dynamic Convolution for Shadow Removal [80.82708225269684]
We introduce a novel Shadow-Aware Dynamic Convolution (SADC) module to decouple the interdependence between the shadow region and the non-shadow region.
Inspired by the fact that the color mapping of the non-shadow region is easier to learn, our SADC processes the non-shadow region with a lightweight convolution module.
We develop a novel intra-convolution distillation loss to strengthen the information flow from the non-shadow region to the shadow region.
arXiv Detail & Related papers (2022-05-10T14:00:48Z) - UnShadowNet: Illumination Critic Guided Contrastive Learning For Shadow
Removal [14.898039056038789]
We introduce a novel weakly supervised shadow removal framework UnShadowNet.
It is composed of a DeShadower network responsible for the removal of the extracted shadow under the guidance of an Illumination network.
We show that UnShadowNet can be easily extended to a fully-supervised set-up to exploit the ground-truth when available.
arXiv Detail & Related papers (2022-03-29T11:17:02Z) - R2D: Learning Shadow Removal to Enhance Fine-Context Shadow Detection [64.10636296274168]
Current shadow detection methods perform poorly when detecting shadow regions that are small, unclear or have blurry edges.
We propose a new method called Restore to Detect (R2D), where a deep neural network is trained for restoration (shadow removal)
We show that our proposed method R2D improves the shadow detection performance while being able to detect fine context better compared to the other recent methods.
arXiv Detail & Related papers (2021-09-20T15:09:22Z) - From Shadow Generation to Shadow Removal [19.486543304598264]
We propose a new G2R-ShadowNet which leverages shadow generation for weakly-supervised shadow removal.
The proposed G2R-ShadowNet consists of three sub-networks for shadow generation, shadow removal and refinement.
In particular, the shadow generation sub-net stylises non-shadow regions to be shadow ones, leading to paired data for training the shadow-removal sub-net.
arXiv Detail & Related papers (2021-03-24T05:49:08Z) - Physics-based Shadow Image Decomposition for Shadow Removal [36.41558227710456]
We propose a novel deep learning method for shadow removal.
Inspired by physical models of shadow formation, we use a linear illumination transformation to model the shadow effects in the image.
We train and test our framework on the most challenging shadow removal dataset.
arXiv Detail & Related papers (2020-12-23T23:06:38Z) - Self-Supervised Shadow Removal [130.6657167667636]
We propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask.
In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images.
arXiv Detail & Related papers (2020-10-22T11:33:41Z) - From Shadow Segmentation to Shadow Removal [34.762493656937366]
The requirement for paired shadow and shadow-free images limits the size and diversity of shadow removal datasets.
We propose a shadow removal method that can be trained using only shadow and non-shadow patches cropped from the shadow images themselves.
arXiv Detail & Related papers (2020-08-01T14:00:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.