論文の概要: A Machine Learning Approach for Driver Identification Based on CAN-BUS
Sensor Data
- arxiv url: http://arxiv.org/abs/2207.10807v1
- Date: Sat, 16 Jul 2022 00:38:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-31 14:32:33.491913
- Title: A Machine Learning Approach for Driver Identification Based on CAN-BUS
Sensor Data
- Title(参考訳): CAN-BUSセンサデータに基づくドライバ同定のための機械学習手法
- Authors: Md. Abbas Ali Khan, Mphammad Hanif Ali, AKM Fazlul Haque, Md. Tarek
Habib
- Abstract要約: ドライバー識別は、コントローラエリアネットワーク(CAN-BUS)の観点から、現代の装飾車両の重要な分野である。
本研究の目的は,運転行動分析に基づく教師付き学習アルゴリズムを用いて運転者を特定することである。
ベースラインアルゴリズムとは対照的に,精度の観点から統計的に有意な結果を得た。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Driver identification is a momentous field of modern decorated vehicles in
the controller area network (CAN-BUS) perspective. Many conventional systems
are used to identify the driver. One step ahead, most of the researchers use
sensor data of CAN-BUS but there are some difficulties because of the variation
of the protocol of different models of vehicle. Our aim is to identify the
driver through supervised learning algorithms based on driving behavior
analysis. To determine the driver, a driver verification technique is proposed
that evaluate driving pattern using the measurement of CAN sensor data. In this
paper on-board diagnostic (OBD-II) is used to capture the data from the CAN-BUS
sensor and the sensors are listed under SAE J1979 statement. According to the
service of OBD-II, drive identification is possible. However, we have gained
two types of accuracy on a complete data set with 10 drivers and a partial data
set with two drivers. The accuracy is good with less number of drivers compared
to the higher number of drivers. We have achieved statistically significant
results in terms of accuracy in contrast to the baseline algorithm
- Abstract(参考訳): ドライバー識別は、コントローラエリアネットワーク(CAN-BUS)の観点から、現代の装飾車両の重要な分野である。
多くの従来型システムがドライバーの識別に使われている。
研究者の多くは、CAN-BUSのセンサーデータを使っているが、車両の異なるモデルのプロトコルのバリエーションのため、いくつかの困難がある。
本研究の目的は,運転行動分析に基づく教師付き学習アルゴリズムを用いて運転者を特定することである。
運転者を決定するために,canセンサデータの測定を用いて運転パターンを評価するための運転者検証手法を提案する。
本報告では,CAN-BUSセンサのデータ収集にOBD-IIを用いており,センサはSAE J 1979文に記載されている。
OBD-IIのサービスにより、ドライブ識別が可能となる。
しかし,10名のドライバによる完全データセットと2名のドライバによる部分データセットの2種類の精度を得た。
ドライバー数が多いのに比べ、ドライバー数が少ないと精度が良い。
ベースラインアルゴリズムとは対照的な精度で統計的に有意な結果を得た。
関連論文リスト
- Your Car Tells Me Where You Drove: A Novel Path Inference Attack via CAN Bus and OBD-II Data [57.22545280370174]
On Path Diagnostic - Intrusion & Inference (OPD-II) は物理カーモデルとマップマッチングアルゴリズムを利用した新しい経路推論攻撃である。
我々は4台の異なる車両と41トラックの道路および交通シナリオに対する攻撃を実行した。
論文 参考訳(メタデータ) (2024-06-30T04:21:46Z) - Federated Learning for Drowsiness Detection in Connected Vehicles [0.19116784879310028]
ドライバー監視システムは、ドライバーの状態を決定するのを助けることができる。
ドライバーの眠気検出は潜在的な解決策を示す。
モデルトレーニングのためにデータを中央マシンに送信するのは、大規模なデータサイズとプライバシの懸念のため、現実的ではありません。
本稿では,YawDDデータセットを活用して,車両ネットワーク内での眠気検出のためのフェデレート学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-06T09:39:13Z) - DME-Driver: Integrating Human Decision Logic and 3D Scene Perception in
Autonomous Driving [65.04871316921327]
本稿では,自律運転システムの性能と信頼性を高める新しい自律運転システムを提案する。
DME-Driverは、意思決定者として強力な視覚言語モデル、制御信号生成者として計画指向認識モデルを利用する。
このデータセットを利用することで、論理的思考プロセスを通じて高精度な計画精度を実現する。
論文 参考訳(メタデータ) (2024-01-08T03:06:02Z) - G-MEMP: Gaze-Enhanced Multimodal Ego-Motion Prediction in Driving [71.9040410238973]
我々は、視線データを用いて、運転者の車両のエゴ軌道を推定することに集中する。
次に、GPSとビデオ入力と視線データを組み合わせた新しいマルチモーダルエゴ軌道予測ネットワークであるG-MEMPを開発する。
その結果,G-MEMPは両ベンチマークにおいて最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-12-13T23:06:30Z) - Enhancing Road Safety through Accurate Detection of Hazardous Driving
Behaviors with Graph Convolutional Recurrent Networks [0.2578242050187029]
グラフ畳み込み長短期記憶ネットワーク(GConvLSTM)に基づく信頼性駆動行動検出(DBD)システムを提案する。
提案モデルでは,公共センサの精度97.5%,非公共センサの平均精度98.1%を達成し,両者の整合性と精度を示した。
提案システムは,道路の安全向上と運転ミスによる事故件数削減に有効である可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-08T21:05:36Z) - OpenDriver: An Open-Road Driver State Detection Dataset [13.756530418314227]
本稿では,運転状態検出のための大規模マルチモーダル運転データセット OpenDriver を提案する。
OpenDriverは合計3,278回の運転で、信号収集期間は約4,600時間である。
論文 参考訳(メタデータ) (2023-04-09T10:08:38Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
本研究は,車両CANデータのクラスタリングとセグメンテーションを同時に行うことで,一般的な運転イベントを教師なしで識別する手法である。
我々は、実際のTesla Model 3車載CANデータと、異なる運転イベントをアノテートした2時間の運転セッションのデータセットを用いて、アプローチを評価した。
論文 参考訳(メタデータ) (2023-01-12T13:10:47Z) - Driver2vec: Driver Identification from Automotive Data [44.84876493736275]
Driver2vecは、センサーデータの短い10秒間隔からドライバを正確に識別することができる。
Driver2vecは、Nervtechが提供する51人のドライバーのデータセットでトレーニングされている。
論文 参考訳(メタデータ) (2021-02-10T03:09:13Z) - Driver Drowsiness Classification Based on Eye Blink and Head Movement
Features Using the k-NN Algorithm [8.356765961526955]
この研究は、ドライバー監視カメラの信号を用いて、車両内の運転者の眠気検知を拡張することを目的としている。
この目的のために、運転シミュレータ実験において、運転者の点眼行動と頭部運動に関連する35の特徴を抽出する。
最高の特徴セットの分析は、運転者の瞬き行動と頭部の動きに対する眠気の影響についての貴重な洞察を与える。
論文 参考訳(メタデータ) (2020-09-28T12:37:38Z) - A Survey and Tutorial of EEG-Based Brain Monitoring for Driver State
Analysis [164.93739293097605]
EEGは運転状態のモニタリングとヒューマンエラー検出において最も効果的な方法の1つであることが証明されている。
本稿では,過去30年間の脳波に基づく運転状態検出システムとその解析アルゴリズムについて論じる。
現在のEEGベースの運転状態監視アルゴリズムは、安全アプリケーションに有望である、と結論付けている。
論文 参考訳(メタデータ) (2020-08-25T18:21:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。