論文の概要: Taguchi based Design of Sequential Convolution Neural Network for
Classification of Defective Fasteners
- arxiv url: http://arxiv.org/abs/2207.10992v1
- Date: Fri, 22 Jul 2022 10:26:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 12:32:02.772338
- Title: Taguchi based Design of Sequential Convolution Neural Network for
Classification of Defective Fasteners
- Title(参考訳): 田口県における欠陥ファスナー分類のための逐次畳み込みニューラルネットワークの設計
- Authors: Manjeet Kaur and Krishan Kumar Chauhan and Tanya Aggarwal and Pushkar
Bharadwaj and Renu Vig and Isibor Kennedy Ihianle and Garima Joshi and Kayode
Owa
- Abstract要約: 本研究は, 田口による実験・解析の設計を用いて, 頑健な自動システムの開発を行う。
提案されたシーケンシャルCNNは96.3%のバリデーション精度、0.277のバリデーション損失0.001の学習率を持つ。
- 参考スコア(独自算出の注目度): 0.08795040582681389
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fasteners play a critical role in securing various parts of machinery.
Deformations such as dents, cracks, and scratches on the surface of fasteners
are caused by material properties and incorrect handling of equipment during
production processes. As a result, quality control is required to ensure safe
and reliable operations. The existing defect inspection method relies on manual
examination, which consumes a significant amount of time, money, and other
resources; also, accuracy cannot be guaranteed due to human error. Automatic
defect detection systems have proven impactful over the manual inspection
technique for defect analysis. However, computational techniques such as
convolutional neural networks (CNN) and deep learning-based approaches are
evolutionary methods. By carefully selecting the design parameter values, the
full potential of CNN can be realised. Using Taguchi-based design of
experiments and analysis, an attempt has been made to develop a robust
automatic system in this study. The dataset used to train the system has been
created manually for M14 size nuts having two labeled classes: Defective and
Non-defective. There are a total of 264 images in the dataset. The proposed
sequential CNN comes up with a 96.3% validation accuracy, 0.277 validation loss
at 0.001 learning rate.
- Abstract(参考訳): ファスナーは機械の様々な部分を確保する上で重要な役割を担っている。
ファスナーの表面のデント、ひび割れ、ひび割れなどの変形は、材料特性と製造過程における機器の不正な取り扱いによって引き起こされる。
その結果,安全かつ信頼性の高い運用を実現するためには品質管理が必要である。
既存の欠陥検査方法は、かなりの時間、お金、その他のリソースを消費する手動検査に依存しているが、ヒューマンエラーのために正確性が保証できない。
自動欠陥検出システムは、欠陥解析のための手動検査技術に影響を与えている。
しかし、畳み込みニューラルネットワーク(CNN)やディープラーニングベースのアプローチといった計算手法は進化的手法である。
設計パラメータ値を慎重に選択することで、CNNの完全なポテンシャルを実現することができる。
田口による実験・解析の設計を用いて, 本研究における堅牢な自動システムの構築を試みた。
システムのトレーニングに使われるデータセットは、DefectiveとNon-defectiveの2つのラベル付きクラスを持つM14サイズのナッツのために手動で作成されている。
データセットには合計264のイメージがある。
提案されたシーケンシャルCNNは、96.3%の検証精度、0.277の検証損失0.001の学習率を持つ。
関連論文リスト
- Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network [4.8748194765816955]
本研究では、自己エンコーダに基づくデータ拡張技術と畳み込みニューラルネットワーク(CNN)を組み合わせた新しい手法を提案する。
提案手法は,ランダムフォレスト,SVM,ロジスティック回帰をそれぞれ19%,21%,27%以上,98.56%の分類精度を達成している。
論文 参考訳(メタデータ) (2024-11-17T10:19:54Z) - CINFormer: Transformer network with multi-stage CNN feature injection
for surface defect segmentation [73.02218479926469]
表面欠陥分割のための多段CNN特徴注入を用いた変圧器ネットワークを提案する。
CINFormerは、入力画像のマルチレベルCNN機能をエンコーダ内のトランスフォーマーネットワークの異なるステージに注入する、シンプルだが効果的な機能統合機構を提供する。
さらに、CINFormerはTop-Kセルフアテンションモジュールを提供し、欠陥に関するより重要な情報を持つトークンにフォーカスする。
論文 参考訳(メタデータ) (2023-09-22T06:12:02Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
本稿では,境界ボックスのクラス信頼度を予測精度に合わせることを目的とした,新たな補助損失定式化を提案する。
その結果,列車の走行時間損失はキャリブレーション基準を超過し,キャリブレーション誤差を低減させることがわかった。
論文 参考訳(メタデータ) (2023-03-25T08:56:21Z) - Recognition of Defective Mineral Wool Using Pruned ResNet Models [88.24021148516319]
我々はミネラルウールのための視覚品質管理システムを開発した。
ウール標本のX線画像が収集され、欠陥および非欠陥サンプルのトレーニングセットが作成された。
我々は98%以上の精度のモデルを得たが、同社の現在の手順と比較すると、20%以上の欠陥製品を認識することができる。
論文 参考訳(メタデータ) (2022-11-01T13:58:02Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
各センサの信号の挙動を別々に検討し,相互の相関関係と隠れ関係を考慮する必要がある。
グラフノードは、異なるセンサーからのデータとして表現することができ、エッジは、これらのデータの影響を互いに表示することができる。
グラフニューラルネットワークのトレーニング中にグラフを構築する方法が提案されている。これにより、センサー間の依存関係が事前に分かっていないデータ上でモデルをトレーニングすることができる。
論文 参考訳(メタデータ) (2022-10-20T11:03:21Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
本稿では,DKAN(Dual Knowledge Align Network)と呼ばれる新しい知識蒸留ネットワークを提案する。
提案したDKAN法は,事前学習型ファインタニング伝達学習パラダイムを踏襲し,ファインタニングのための知識蒸留フレームワークを設計した。
Few-shot NEU-DETデータセットをインクリメンタルに実験した結果、DKANは様々なシーンで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-09-01T15:08:44Z) - An Uncertainty-Aware Deep Learning Framework for Defect Detection in
Casting Products [11.792984988875157]
鋳造工程の複雑さのため、鋳造工程では欠陥は避けられない。
CNNは画像分類と欠陥検出の両方に広く応用されている。
頻繁な推測を持つCNNは、トレーニングするために大量のデータを必要とし、予測の不確実性に関する有益な見積もりを報告するのに依然として不足している。
論文 参考訳(メタデータ) (2021-07-24T16:17:20Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN)
based Ball-Bearing Failure Detection Method [4.543665832042712]
本稿では,回転軸用ボールベアリング接合部の故障検出のためのFaultFace法を提案する。
Deep Convolutional Generative Adversarial Networkは、バランスの取れたデータセットを得るために、名目と失敗の振る舞いの新しいフェイスポートを作成するために使用される。
論文 参考訳(メタデータ) (2020-07-30T06:37:53Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z) - Toward Enabling a Reliable Quality Monitoring System for Additive
Manufacturing Process using Deep Convolutional Neural Networks [0.0]
本稿では, 深層畳み込みニューラルネットワーク(CNN)モデルを用いて, 添加物製造(AM)プロセスの自動品質評価システムを提案する。
CNNモデルは, 層間積層における内部および表面欠陥の画像を用いてオフラインで訓練し, 異なる押出成形速度と温度でAMプロセスの故障を検出し, 分類する性能について検討した。
提案するオンラインモデルでは,AMプロセスに自動で一貫した非接触品質制御信号が付加され,完全構築後の部品の手動検査が不要になる。
論文 参考訳(メタデータ) (2020-03-06T20:49:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。