論文の概要: Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network
- arxiv url: http://arxiv.org/abs/2411.11029v1
- Date: Sun, 17 Nov 2024 10:19:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:34:29.114923
- Title: Wafer Map Defect Classification Using Autoencoder-Based Data Augmentation and Convolutional Neural Network
- Title(参考訳): オートエンコーダに基づくデータ拡張と畳み込みニューラルネットワークを用いたウェハマップ欠陥分類
- Authors: Yin-Yin Bao, Er-Chao Li, Hong-Qiang Yang, Bin-Bin Jia,
- Abstract要約: 本研究では、自己エンコーダに基づくデータ拡張技術と畳み込みニューラルネットワーク(CNN)を組み合わせた新しい手法を提案する。
提案手法は,ランダムフォレスト,SVM,ロジスティック回帰をそれぞれ19%,21%,27%以上,98.56%の分類精度を達成している。
- 参考スコア(独自算出の注目度): 4.8748194765816955
- License:
- Abstract: In semiconductor manufacturing, wafer defect maps (WDMs) play a crucial role in diagnosing issues and enhancing process yields by revealing critical defect patterns. However, accurately categorizing WDM defects presents significant challenges due to noisy data, unbalanced defect classes, and the complexity of failure modes. To address these challenges, this study proposes a novel method combining a self-encoder-based data augmentation technique with a convolutional neural network (CNN). By introducing noise into the latent space, the self-encoder enhances data diversity and mitigates class imbalance, thereby improving the model's generalization capabilities. The augmented dataset is subsequently used to train the CNN, enabling it to deliver precise classification of both common and rare defect patterns. Experimental results on the WM-811K dataset demonstrate that the proposed method achieves a classification accuracy of 98.56%, surpassing Random Forest, SVM, and Logistic Regression by 19%, 21%, and 27%, respectively. These findings highlight the robustness and effectiveness of the proposed approach, offering a reliable solution for wafer defect detection and classification.
- Abstract(参考訳): 半導体製造において、ウェハ欠陥マップ(WDM)は、重要な欠陥パターンを明らかにすることによって問題を診断し、プロセスの収量を高める上で重要な役割を担っている。
しかし、WDMの欠陥を正確に分類すると、ノイズの多いデータ、不均衡な欠陥クラス、障害モードの複雑さなど、重大な課題が生じる。
これらの課題に対処するために、自己エンコーダに基づくデータ拡張技術と畳み込みニューラルネットワーク(CNN)を組み合わせた新しい手法を提案する。
遅延空間にノイズを導入することで、自己エンコーダはデータの多様性を高め、クラス不均衡を緩和し、モデルの一般化能力を向上させる。
その後、強化データセットがCNNのトレーニングに使用され、一般的なパターンと稀な欠陥パターンの両方を正確に分類することができる。
WM-811Kデータセットの実験結果から,提案手法の分類精度は98.56%であり,ランダムフォレスト,SVM,ロジスティック回帰をそれぞれ19%,21%,27%を上回った。
これらの知見は、ウェハ欠陥の検出と分類のための信頼性の高いソリューションを提供することにより、提案手法の堅牢性と有効性を強調した。
関連論文リスト
- Few-shot learning for COVID-19 Chest X-Ray Classification with
Imbalanced Data: An Inter vs. Intra Domain Study [49.5374512525016]
医療画像データセットは、コンピュータ支援診断、治療計画、医学研究に使用される訓練モデルに不可欠である。
データ分散のばらつき、データの不足、ジェネリックイメージから事前トレーニングされたモデルを使用する場合の転送学習の問題などである。
本稿では,データ不足と分散不均衡の影響を軽減するために,一連の手法を統合したシームズニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2024-01-18T16:59:27Z) - An AI-enabled Bias-Free Respiratory Disease Diagnosis Model using Cough
Audio: A Case Study for COVID-19 [1.1146119513912156]
トレーニングデータ配信における共同創設者の影響を軽減するため, Bias Free Network (RBFNet) を提案する。
RBFNetは正確なRD診断機能を保証し、COVID19データセットを組み込むことでその関連性を強調する。
条件付き生成Adrial Network (cGAN) を定式化するための分類スキームに新たなバイアス予測器が組み込まれている
論文 参考訳(メタデータ) (2024-01-04T13:09:45Z) - Generative Model-Driven Synthetic Training Image Generation: An Approach
to Cognition in Rail Defect Detection [12.584718477246382]
本研究では,VAEを用いたレール欠陥の合成画像生成手法を提案する。
カナダ太平洋鉄道(Canadian Pacific Railway)の合成データセットを作成するために用いられる。
500の合成サンプルが生成され、最小の復元損失は0.021である。
論文 参考訳(メタデータ) (2023-12-31T04:34:58Z) - A novel approach for wafer defect pattern classification based on
topological data analysis [0.0]
半導体製造において、ウェハマップ欠陥パターンは設備維持と収量管理に重要な情報を提供する。
本稿では,欠陥パターンの形状を有限次元ベクトルとして表現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-09-19T11:54:13Z) - A New Knowledge Distillation Network for Incremental Few-Shot Surface
Defect Detection [20.712532953953808]
本稿では,DKAN(Dual Knowledge Align Network)と呼ばれる新しい知識蒸留ネットワークを提案する。
提案したDKAN法は,事前学習型ファインタニング伝達学習パラダイムを踏襲し,ファインタニングのための知識蒸留フレームワークを設計した。
Few-shot NEU-DETデータセットをインクリメンタルに実験した結果、DKANは様々なシーンで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2022-09-01T15:08:44Z) - Effective Class-Imbalance learning based on SMOTE and Convolutional
Neural Networks [0.1074267520911262]
不均衡データ(ID)は、機械学習(ML)モデルから満足な結果を得るための問題である。
本稿では,Deep Neural Networks(DNN)とConvolutional Neural Networks(CNN)に基づく手法の有効性を検討する。
信頼性の高い結果を得るために,ランダムにシャッフルしたデータ分布を用いて100回実験を行った。
論文 参考訳(メタデータ) (2022-09-01T07:42:16Z) - Semantic Perturbations with Normalizing Flows for Improved
Generalization [62.998818375912506]
我々は、非教師付きデータ拡張を定義するために、潜在空間における摂動が利用できることを示す。
トレーニングを通して分類器に適応する潜伏性対向性摂動が最も効果的であることが判明した。
論文 参考訳(メタデータ) (2021-08-18T03:20:00Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。