Synthesizing a $\hat{\sigma}_z$ spin-dependent force for optical,
metastable, and ground state trapped-ion qubits
- URL: http://arxiv.org/abs/2207.11193v2
- Date: Thu, 1 Dec 2022 09:39:19 GMT
- Title: Synthesizing a $\hat{\sigma}_z$ spin-dependent force for optical,
metastable, and ground state trapped-ion qubits
- Authors: O. B\u{a}z\u{a}van, S. Saner, M. Minder, A. C. Hughes, R. T.
Sutherland, D. M. Lucas, R. Srinivas, C. J. Ballance
- Abstract summary: A single bichromatic field near-resonant to a qubit transition is typically used for $hatsigma_x$ or $hatsigma_y$ Molmer-Sorensen type interactions in trapped ion systems.
It is also possible to synthesize a $hatsigma_z$ spin-dependent force by merely adjusting the beat-note frequency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A single bichromatic field near-resonant to a qubit transition is typically
used for $\hat{\sigma}_x$ or $\hat{\sigma}_y$ M{\o}lmer-S{\o}rensen type
interactions in trapped ion systems. Using this field configuration, it is also
possible to synthesize a $\hat{\sigma}_z$ spin-dependent force by merely
adjusting the beat-note frequency. Here, we expand on previous work and present
a comprehensive theoretical and experimental investigation of this scheme with
a laser near-resonant to a quadrupole transition in $^{88}$Sr$^+$. Further, we
characterise its robustness to optical phase and qubit frequency offsets, and
demonstrate its versatility by entangling optical, metastable, and ground state
qubits.
Related papers
- Quantum Phonon Dynamics Induced Spontaneous Spin-Orbit Coupling [9.748987642024122]
A spin-dependent electron-phonon coupling model is investigated on a half-filled square lattice.
Spin-orbit coupling emerges as an order in the ground state for any $lambda$ in the adiabatic limit.
Our work opens up the possibility of hidden spin-orbit coupling in materials where it is otherwise forbidden by lattice symmetry.
arXiv Detail & Related papers (2024-10-22T12:19:52Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Engineering infinite-range SU($n$) interactions with spin-orbit-coupled
fermions in an optical lattice [0.0]
We study multilevel fermions in an optical lattice described by the Hubbard model with on site SU($n$)-symmetric interactions.
Raman pulses that address internal spin states modify the atomic dispersion relation and induce spin-orbit coupling.
Our predictions are readily testable in current experiments with ultracold alkaline-earth(-like) atoms.
arXiv Detail & Related papers (2021-09-22T20:13:20Z) - Characterization of the lowest excited-state ro-vibrational level of
$^{23}$Na$^{87}$Rb [2.0575351445652057]
We investigate the lowest ro-vibrational level of the $b3Pi$ state with high resolution laser spectroscopy.
This electronic spin-forbidden $X1Sigma+ leftrightarrow b3Pi$ transition features a nearly diagonal Franck-Condon factor.
arXiv Detail & Related papers (2021-08-02T04:28:53Z) - Constraining Axion-to-Nucleon interaction via ultranarrow linewidth in
the Casimir-less regime [7.973708885357668]
We develop a quantum optical method to detect the axion-nucleon interaction.
We translate the trapping positions of the nanosphere, resulting the shift of its resonance frequency.
The frequency shift can be related to the additional forces due to two-axion exchange via substraction.
arXiv Detail & Related papers (2021-07-17T10:39:46Z) - Algorithmic Ground-state Cooling of Weakly-Coupled Oscillators using
Quantum Logic [52.77024349608834]
We introduce a novel algorithmic cooling protocol for transferring phonons from poorly- to efficiently-cooled modes.
We demonstrate it experimentally by simultaneously bringing two motional modes of a Be$+$-Ar$13+$ mixed Coulomb crystal close to their zero-point energies.
We reach the lowest temperature reported for a highly charged ion, with a residual temperature of only $Tlesssim200mathrmmu K$ in each of the two modes.
arXiv Detail & Related papers (2021-02-24T17:46:15Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z) - Minimum optical depth multi-port interferometers for approximating any
unitary transformation and any pure state [52.77024349608834]
We show that any pure state, in any dimension $d$, can be prepared with infidelity $le 10-15$ using multi-port interferometers.
The schemes in [Phys. Rev. Lett. textbf73, 58 (1994) and Optica text3, 1460, 1460, only achieves an infidelity in the order of $10-7$ for block-diagonal unitary transformations.
arXiv Detail & Related papers (2020-02-04T15:40:49Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.