Human Treelike Tubular Structure Segmentation: A Comprehensive Review
and Future Perspectives
- URL: http://arxiv.org/abs/2207.11203v1
- Date: Tue, 12 Jul 2022 17:01:42 GMT
- Title: Human Treelike Tubular Structure Segmentation: A Comprehensive Review
and Future Perspectives
- Authors: Hao Li, Zeyu Tang, Yang Nan, Guang Yang
- Abstract summary: structures in human physiology follow a treelike morphology, which often expresses complexity at very fine scales.
Large collections of 2D and 3D images have been made available by medical imaging modalities.
Analysis of structure provides insights into disease diagnosis, treatment planning, and prognosis.
- Score: 8.103169967374944
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Various structures in human physiology follow a treelike morphology, which
often expresses complexity at very fine scales. Examples of such structures are
intrathoracic airways, retinal blood vessels, and hepatic blood vessels. Large
collections of 2D and 3D images have been made available by medical imaging
modalities such as magnetic resonance imaging (MRI), computed tomography (CT),
Optical coherence tomography (OCT) and ultrasound in which the spatial
arrangement can be observed. Segmentation of these structures in medical
imaging is of great importance since the analysis of the structure provides
insights into disease diagnosis, treatment planning, and prognosis. Manually
labelling extensive data by radiologists is often time-consuming and
error-prone. As a result, automated or semi-automated computational models have
become a popular research field of medical imaging in the past two decades, and
many have been developed to date. In this survey, we aim to provide a
comprehensive review of currently publicly available datasets, segmentation
algorithms, and evaluation metrics. In addition, current challenges and future
research directions are discussed.
Related papers
- Anatomy-guided Pathology Segmentation [56.883822515800205]
We develop a generalist segmentation model that combines anatomical and pathological information, aiming to enhance the segmentation accuracy of pathological features.
Our Anatomy-Pathology Exchange (APEx) training utilizes a query-based segmentation transformer which decodes a joint feature space into query-representations for human anatomy.
In doing so, we are able to report the best results across the board on FDG-PET-CT and Chest X-Ray pathology segmentation tasks with a margin of up to 3.3% as compared to strong baseline methods.
arXiv Detail & Related papers (2024-07-08T11:44:15Z) - Dr-SAM: An End-to-End Framework for Vascular Segmentation, Diameter Estimation, and Anomaly Detection on Angiography Images [2.9265754968401723]
Dr-SAM is a framework for vessel segmentation, diameter estimation, and anomaly analysis.
We introduce a new benchmark dataset for the comprehensive analysis of peripheral vessel angiography images.
arXiv Detail & Related papers (2024-04-25T20:43:32Z) - SegmentAnyBone: A Universal Model that Segments Any Bone at Any Location
on MRI [13.912230325828943]
We propose a versatile, publicly available deep-learning model for bone segmentation in MRI across multiple standard MRI locations.
The proposed model can operate in two modes: fully automated segmentation and prompt-based segmentation.
Our contributions include (1) collecting and annotating a new MRI dataset across various MRI protocols, encompassing over 300 annotated volumes and 8485 annotated slices across diverse anatomic regions.
arXiv Detail & Related papers (2024-01-23T18:59:25Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
Visual attribution in medical imaging seeks to make evident the diagnostically-relevant components of a medical image.
We here present a novel generative visual attribution technique, one that leverages latent diffusion models in combination with domain-specific large language models.
The resulting system also exhibits a range of latent capabilities including zero-shot localized disease induction.
arXiv Detail & Related papers (2024-01-02T19:51:49Z) - Towards Automated Semantic Segmentation in Mammography Images [0.0]
We propose a deep learning-based framework for the segmentation of the nipple, the pectoral muscle, the fibroglandular tissue, and the fatty tissue on standard-view mammography images.
arXiv Detail & Related papers (2023-07-18T15:04:42Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Detailed Annotations of Chest X-Rays via CT Projection for Report
Understanding [16.5295886999348]
In clinical radiology reports, doctors capture important information about the patient's health status.
They convey their observations from raw medical imaging data about the inner structures of a patient.
This explicit grasp on both the patient's anatomy and their appearance is missing in current medical image-processing systems.
arXiv Detail & Related papers (2022-10-07T09:21:48Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
We combine two language models, the Show-Attend-Tell and the GPT-3, to generate comprehensive and descriptive radiology records.
The proposed model is tested on two medical datasets, the Open-I, MIMIC-CXR, and the general-purpose MS-COCO.
arXiv Detail & Related papers (2022-09-28T10:27:10Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
Large Scale Vertebrae Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020.
We present the the results of this evaluation and further investigate the performance-variation at vertebra-level, scan-level, and at different fields-of-view.
arXiv Detail & Related papers (2020-01-24T21:09:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.