論文の概要: Defending Substitution-Based Profile Pollution Attacks on Sequential
Recommenders
- arxiv url: http://arxiv.org/abs/2207.11237v1
- Date: Tue, 19 Jul 2022 00:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-31 14:12:55.719480
- Title: Defending Substitution-Based Profile Pollution Attacks on Sequential
Recommenders
- Title(参考訳): シーケンシャルレコメンデーションにおける代替型プロファイル汚染攻撃の防御
- Authors: Zhenrui Yue, Huimin Zeng, Ziyi Kou, Lanyu Shang, Dong Wang
- Abstract要約: 本稿では,ある脆弱な要素を選択し,それを逆数要素に置換することで,入力シーケンスを修飾する置換型逆数攻撃アルゴリズムを提案する。
また、ディリクレ近傍サンプリングと呼ばれる効率的な対角防御手法を設計する。
特に,選択した項目を1ホットエンコーディングで表現し,エンコーディングの勾配上昇を行い,トレーニング中の項目埋め込みの最悪の場合の線形結合を探索する。
- 参考スコア(独自算出の注目度): 8.828396559882954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While sequential recommender systems achieve significant improvements on
capturing user dynamics, we argue that sequential recommenders are vulnerable
against substitution-based profile pollution attacks. To demonstrate our
hypothesis, we propose a substitution-based adversarial attack algorithm, which
modifies the input sequence by selecting certain vulnerable elements and
substituting them with adversarial items. In both untargeted and targeted
attack scenarios, we observe significant performance deterioration using the
proposed profile pollution algorithm. Motivated by such observations, we design
an efficient adversarial defense method called Dirichlet neighborhood sampling.
Specifically, we sample item embeddings from a convex hull constructed by
multi-hop neighbors to replace the original items in input sequences. During
sampling, a Dirichlet distribution is used to approximate the probability
distribution in the neighborhood such that the recommender learns to combat
local perturbations. Additionally, we design an adversarial training method
tailored for sequential recommender systems. In particular, we represent
selected items with one-hot encodings and perform gradient ascent on the
encodings to search for the worst case linear combination of item embeddings in
training. As such, the embedding function learns robust item representations
and the trained recommender is resistant to test-time adversarial examples.
Extensive experiments show the effectiveness of both our attack and defense
methods, which consistently outperform baselines by a significant margin across
model architectures and datasets.
- Abstract(参考訳): 逐次レコメンダシステムはユーザダイナミクスのキャプチャにおいて著しく改善されているが、逐次レコメンダは置換ベースのプロファイル汚染攻撃に対して脆弱である。
本仮説を実証するために,ある脆弱な要素を選択し,それを逆数要素に置換することで入力シーケンスを修飾する置換型逆数攻撃アルゴリズムを提案する。
対象外および対象外の両方の攻撃シナリオにおいて,提案したプロファイル汚染アルゴリズムを用いて大きな性能劣化を観測する。
このような観測により、ディリクレ近傍サンプリングと呼ばれる効率的な対角防御法を設計する。
具体的には、複数のホップ近傍で構築された凸包からアイテム埋め込みをサンプリングし、入力シーケンスの元のアイテムを置き換える。
サンプリング中、ディリクレ分布は近所の確率分布を近似するために使われ、レコメンデーターは局所摂動と戦うことを学習する。
さらに,逐次レコメンデータシステム用に調整した逆訓練手法を考案する。
特に,選択した項目を1ホットエンコーディングで表現し,エンコーディングの勾配上昇を行い,トレーニング中の項目埋め込みの最悪の場合の線形結合を探索する。
そのため、埋め込み関数は堅牢なアイテム表現を学習し、トレーニングされたレコメンダはテストタイムの敵例に耐性がある。
大規模な実験では、我々の攻撃方法と防御方法の両方の有効性が示され、モデルアーキテクチャとデータセットの差でベースラインを一貫して上回ります。
関連論文リスト
- Diffusion-based Contrastive Learning for Sequential Recommendation [6.3482831836623355]
本稿では,CaDiRecという,文脈対応拡散に基づく逐次推薦のためのコントラスト学習を提案する。
CaDiRecは、コンテキスト対応拡散モデルを使用して、シーケンス内の所定の位置に対する代替アイテムを生成する。
フレームワーク全体をエンドツーエンドでトレーニングし、拡散モデルとレコメンデーションモデルの間でアイテムの埋め込みを共有します。
論文 参考訳(メタデータ) (2024-05-15T14:20:37Z) - Prototypical Contrastive Learning through Alignment and Uniformity for
Recommendation [6.790779112538357]
提案するアンダーライン・アライメントとアンダーライン・ユニフォーマル性によるインダーライン型コントラスト学習について述べる。
具体的には、まず、原点グラフから異なる拡張点間の整合性を確保するために、潜時空間としてプロトタイプを提案する。
明示的な負の欠如は、インスタンスとプロトタイプ間の整合性損失を直接最適化することで、次元的な崩壊の問題が容易に生じることを意味する。
論文 参考訳(メタデータ) (2024-02-03T08:19:26Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Token-Level Adversarial Prompt Detection Based on Perplexity Measures
and Contextual Information [67.78183175605761]
大規模言語モデルは、敵の迅速な攻撃に影響を受けやすい。
この脆弱性は、LLMの堅牢性と信頼性に関する重要な懸念を浮き彫りにしている。
トークンレベルで敵のプロンプトを検出するための新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-20T03:17:21Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Query-Efficient and Scalable Black-Box Adversarial Attacks on Discrete
Sequential Data via Bayesian Optimization [10.246596695310176]
ブラックボックス設定における離散的な逐次データに基づくモデルに対する敵攻撃の問題に焦点をあてる。
我々はベイジアン最適化を用いたクエリ効率の良いブラックボックス攻撃を提案し、重要な位置を動的に計算する。
そこで我々は,摂動サイズを小さくした逆例を求めるポスト最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-17T06:11:36Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
現在のディープニューラルネットワーク(DNN)は、入力に対する敵の摂動が分類を変更したり操作したりする敵の攻撃に対して脆弱である。
このような攻撃を防御するために、敵の訓練(AT)として知られる効果的なアプローチが、堅牢な訓練を緩和するために示されている。
複数のマシンにまたがって実装された大規模バッチ対逆トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-13T15:39:43Z) - Learning to Separate Clusters of Adversarial Representations for Robust
Adversarial Detection [50.03939695025513]
本稿では,最近導入された非破壊的特徴を動機とした新しい確率的対向検出器を提案する。
本稿では,非ロバスト特徴を逆例の共通性と考え,その性質に対応する表現空間におけるクラスターの探索が可能であることを推定する。
このアイデアは、別のクラスタ内の逆表現の確率推定分布を導出し、その分布を確率に基づく逆検出器として活用する。
論文 参考訳(メタデータ) (2020-12-07T07:21:18Z) - ATRO: Adversarial Training with a Rejection Option [10.36668157679368]
本稿では, 逆例による性能劣化を軽減するために, 拒否オプション付き分類フレームワークを提案する。
分類器と拒否関数を同時に適用することにより、テストデータポイントの分類に自信が不十分な場合に分類を控えることができる。
論文 参考訳(メタデータ) (2020-10-24T14:05:03Z) - Protecting Classifiers From Attacks. A Bayesian Approach [0.9449650062296823]
我々は,攻撃者の行動に関する正確な知識の欠如を,敵対的リスク分析を用いて考慮した代替的ベイズ的枠組みを提供する。
本研究では, 近似ベイズ計算に基づくサンプリング手法を提案する。
大規模問題に対して、微分可能な分類器を扱う際に使用できる代替のスケーラブルなアプローチを提案する。
論文 参考訳(メタデータ) (2020-04-18T21:21:56Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。