論文の概要: Multiface: A Dataset for Neural Face Rendering
- arxiv url: http://arxiv.org/abs/2207.11243v1
- Date: Fri, 22 Jul 2022 17:55:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-25 13:37:21.040871
- Title: Multiface: A Dataset for Neural Face Rendering
- Title(参考訳): Multiface: ニューラルフェイスレンダリングのためのデータセット
- Authors: Cheng-hsin Wuu, Ningyuan Zheng, Scott Ardisson, Rohan Bali, Danielle
Belko, Eric Brockmeyer, Lucas Evans, Timothy Godisart, Hyowon Ha, Alexander
Hypes, Taylor Koska, Steven Krenn, Stephen Lombardi, Xiaomin Luo, Kevyn
McPhail, Laura Millerschoen, Michal Perdoch, Mark Pitts, Alexander Richard,
Jason Saragih, Junko Saragih, Takaaki Shiratori, Tomas Simon, Matt Stewart,
Autumn Trimble, Xinshuo Weng, David Whitewolf, Chenglei Wu, Shoou-I Yu, Yaser
Sheikh
- Abstract要約: 本研究では,新しいマルチビュー,高解像度のヒューマン・フェイス・データセットであるMultifaceを提案する。
顔のパフォーマンスの高解像度同期映像をキャプチャする大規模なマルチカメラ装置であるMugsyを紹介する。
Multifaceの目的は、学術コミュニティにおける高品質データへのアクセシビリティのギャップを埋め、VRテレプレゼンスの研究を可能にすることである。
- 参考スコア(独自算出の注目度): 108.39846745819474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photorealistic avatars of human faces have come a long way in recent years,
yet research along this area is limited by a lack of publicly available,
high-quality datasets covering both, dense multi-view camera captures, and rich
facial expressions of the captured subjects. In this work, we present
Multiface, a new multi-view, high-resolution human face dataset collected from
13 identities at Reality Labs Research for neural face rendering. We introduce
Mugsy, a large scale multi-camera apparatus to capture high-resolution
synchronized videos of a facial performance. The goal of Multiface is to close
the gap in accessibility to high quality data in the academic community and to
enable research in VR telepresence. Along with the release of the dataset, we
conduct ablation studies on the influence of different model architectures
toward the model's interpolation capacity of novel viewpoint and expressions.
With a conditional VAE model serving as our baseline, we found that adding
spatial bias, texture warp field, and residual connections improves performance
on novel view synthesis. Our code and data is available at:
https://github.com/facebookresearch/multiface
- Abstract(参考訳): 近年、人間の顔の写実的なアバターは長い道のりを歩んでいるが、この分野の研究は、一般公開された高品質なデータセットの欠如、密集したマルチビューカメラの撮影、被写体のリッチな表情によって制限されている。
本研究では,多視点・高精細な顔データセットであるmultifaceを,realial labs research for neural face renderingで13名から収集した。
顔のパフォーマンスの高解像度同期映像をキャプチャする大規模なマルチカメラ装置であるMugsyを紹介する。
Multifaceの目的は、学術コミュニティにおける高品質データへのアクセシビリティのギャップを埋め、VRテレプレゼンスの研究を可能にすることである。
データセットのリリースとともに、異なるモデルアーキテクチャが新しい視点と表現のモデルの補間能力に与える影響についてアブレーション研究を行う。
条件付きVAEモデルをベースラインとして,空間バイアス,テクスチャワープフィールド,残差接続を加えることで,新規なビュー合成の性能が向上することがわかった。
私たちのコードとデータは、https://github.com/facebookresearch/multifaceで利用可能です。
関連論文リスト
- Single Image, Any Face: Generalisable 3D Face Generation [59.9369171926757]
我々は,制約のない単一画像入力を伴う3次元顔を生成する新しいモデルGen3D-Faceを提案する。
私たちの知る限りでは、これは1枚の画像からフォトリアリスティックな3D顔アバターを作るための最初の試みであり、ベンチマークである。
論文 参考訳(メタデータ) (2024-09-25T14:56:37Z) - FaceVid-1K: A Large-Scale High-Quality Multiracial Human Face Video Dataset [15.917564646478628]
我々はtextbfFaceVid-1K という高品質な多人種顔コレクションを作成している。
我々は,テキスト・トゥ・ビデオ,画像・トゥ・ビデオ,無条件映像生成など,確立されたビデオ生成モデルを用いて実験を行った。
対応するパフォーマンスベンチマークを取得し、公開データセットでトレーニングされたベンチマークと比較し、データセットの優位性を実証する。
論文 参考訳(メタデータ) (2024-09-23T07:27:02Z) - VIGFace: Virtual Identity Generation Model for Face Image Synthesis [13.81887339529775]
合成顔画像を生成する新しいフレームワークであるVIGFaceを提案する。
肖像画の権利を気にすることなく、仮想顔画像を作成することができる。
既存のイメージを組み込んだ効果的な拡張手法として機能する。
論文 参考訳(メタデータ) (2024-03-13T06:11:41Z) - EFHQ: Multi-purpose ExtremePose-Face-HQ dataset [1.8194090162317431]
この研究は、Extreme Pose Face High-Qualityデータセット(EFHQ)と呼ばれる新しいデータセットを導入し、極端なポーズで顔の最大450kの高品質な画像を含む。
このような膨大なデータセットを生成するために、我々は、新しく精巧なデータセット処理パイプラインを使用して、2つの公開データセットをキュレートする。
我々のデータセットは、顔合成と2D/3D対応のGAN、拡散ベースの顔生成、顔の再現など、さまざまな顔関連タスクに関する既存のデータセットを補完することができる。
論文 参考訳(メタデータ) (2023-12-28T18:40:31Z) - DNA-Rendering: A Diverse Neural Actor Repository for High-Fidelity
Human-centric Rendering [126.00165445599764]
ニューラルアクターレンダリングのための人間のパフォーマンスデータの大規模かつ高忠実なリポジトリであるDNAレンダリングを提案する。
我々のデータセットには、1500人以上の被験者、5000のモーションシーケンス、67.5Mのフレームのデータボリュームが含まれています。
我々は,最大解像度4096 x 3000の60個の同期カメラと15fpsの速度,ステルカメラキャリブレーションステップを含む,データをキャプチャするプロフェッショナルなマルチビューシステムを構築した。
論文 参考訳(メタデータ) (2023-07-19T17:58:03Z) - HQ3DAvatar: High Quality Controllable 3D Head Avatar [65.70885416855782]
本稿では,高フォトリアリスティックなデジタルヘッドアバターを構築するための新しいアプローチを提案する。
本手法はニューラルネットワークによってパラメータ化された暗黙関数を用いて標準空間を学習する。
テスト時,本手法は単眼のRGBビデオによって駆動される。
論文 参考訳(メタデータ) (2023-03-25T13:56:33Z) - Generalizable Neural Performer: Learning Robust Radiance Fields for
Human Novel View Synthesis [52.720314035084215]
この研究は、一般のディープラーニングフレームワークを使用して、任意の人間の演奏者の自由視点画像を合成することを目的としている。
我々は、汎用的で堅牢な神経体表現を学習するシンプルな、かつ強力なフレームワーク、Generalizable Neural Performer(GNR)を提案する。
GeneBody-1.0とZJU-Mocapの実験は、最近の最先端の一般化可能な手法よりも、我々の手法の堅牢性を示している。
論文 参考訳(メタデータ) (2022-04-25T17:14:22Z) - DeepMultiCap: Performance Capture of Multiple Characters Using Sparse
Multiview Cameras [63.186486240525554]
deep multicapは、スパースマルチビューカメラを用いたマルチパーソンパフォーマンスキャプチャのための新しい手法である。
本手法では,事前走査型テンプレートモデルを用いることなく,時間変化した表面の詳細をキャプチャできる。
論文 参考訳(メタデータ) (2021-05-01T14:32:13Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
大規模なデータセットは、ディープニューラルネットワークの改善、ターゲットトレーニングに使用することができる。
特に,100の合成IDからなるデータセットにまたがる複数の2次元画像のレンダリングに3次元形態素顔モデルを用いる。
論文 参考訳(メタデータ) (2020-06-21T10:29:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。