論文の概要: Arbitrary Style Transfer with Structure Enhancement by Combining the
Global and Local Loss
- arxiv url: http://arxiv.org/abs/2207.11438v1
- Date: Sat, 23 Jul 2022 07:02:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 15:37:05.313947
- Title: Arbitrary Style Transfer with Structure Enhancement by Combining the
Global and Local Loss
- Title(参考訳): グローバルロスとローカルロスの併用による構造強化による任意型転送
- Authors: Lizhen Long and Chi-Man Pun
- Abstract要約: 本稿では,グローバルな損失と局所的な損失を組み合わせ,構造拡張を伴う任意のスタイル転送手法を提案する。
実験結果から,視覚効果の優れた高画質画像が生成できることが示唆された。
- 参考スコア(独自算出の注目度): 51.309905690367835
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Arbitrary style transfer generates an artistic image which combines the
structure of a content image and the artistic style of the artwork by using
only one trained network. The image representation used in this method contains
content structure representation and the style patterns representation, which
is usually the features representation of high-level in the pre-trained
classification networks. However, the traditional classification networks were
designed for classification which usually focus on high-level features and
ignore other features. As the result, the stylized images distribute style
elements evenly throughout the image and make the overall image structure
unrecognizable. To solve this problem, we introduce a novel arbitrary style
transfer method with structure enhancement by combining the global and local
loss. The local structure details are represented by Lapstyle and the global
structure is controlled by the image depth. Experimental results demonstrate
that our method can generate higher-quality images with impressive visual
effects on several common datasets, comparing with other state-of-the-art
methods.
- Abstract(参考訳): 任意スタイル転送は、トレーニングされた1つのネットワークのみを用いて、コンテンツ画像の構造と芸術スタイルを組み合わせた芸術画像を生成する。
本手法で使用する画像表現は,事前学習された分類ネットワークにおける高レベル表現であるコンテンツ構造表現とスタイルパターン表現を含む。
しかし、従来の分類ネットワークは、通常ハイレベルな特徴に注目し、他の特徴を無視する分類のために設計された。
その結果、スタイリングされた画像は、画像全体に均等にスタイル要素を分散し、全体像構造を認識不能にする。
この問題を解決するために,グローバルとローカルの損失を組み合わせた構造拡張型任意のスタイル転送手法を提案する。
局所構造の詳細はラップスタイルで表現され、大域構造は画像深度で制御される。
実験結果から,本手法は他の最先端手法と比較して,印象的な視覚効果を持つ高品質画像を生成することが可能であることが判明した。
関連論文リスト
- StyleBrush: Style Extraction and Transfer from a Single Image [19.652575295703485]
ビジュアルコンテンツのスティル化は、オリジナルの構造的特徴を保ちながら、ピクセルレベルで特定のスタイルパターンを追加することを目的としている。
本稿では,参照画像からスタイルを正確にキャプチャし,抽出したスタイルを他の入力ビジュアルコンテンツにブラシするStyleBrushを提案する。
論文 参考訳(メタデータ) (2024-08-18T14:27:20Z) - Generative AI Model for Artistic Style Transfer Using Convolutional
Neural Networks [0.0]
芸術的なスタイルの転送は、ある画像の内容を別の芸術的なスタイルに融合させ、ユニークな視覚的な構成を作り出すことである。
本稿では,畳み込みニューラルネットワーク(CNN)を用いた新しいスタイル伝達手法の概要を概説する。
論文 参考訳(メタデータ) (2023-10-27T16:21:17Z) - TSSAT: Two-Stage Statistics-Aware Transformation for Artistic Style
Transfer [22.16475032434281]
芸術的スタイルの転送は、対象の芸術的スタイルで与えられた写真をレンダリングすることで、新しい芸術的イメージを作成することを目的としている。
既存の手法では、グローバルな統計や局所的なパッチに基づいてスタイルを学習し、実際の描画過程の注意深い考慮を欠いている。
本稿では,コンテンツとスタイルの特徴のグローバルな統計を整合させて,まずグローバルなスタイル基盤を構築する2段階統計認識変換(TSSAT)モジュールを提案する。
コンテンツとスタイルの表現をさらに強化するために、注意に基づくコンテンツ損失とパッチベースのスタイル損失という2つの新しい損失を導入する。
論文 参考訳(メタデータ) (2023-09-12T07:02:13Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Local and Global GANs with Semantic-Aware Upsampling for Image
Generation [201.39323496042527]
ローカルコンテキストを用いて画像を生成することを検討する。
セマンティックマップをガイダンスとして用いたクラス固有の生成ネットワークを提案する。
最後に,セマンティック・アウェア・アップサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-02-28T19:24:25Z) - UMFA: A photorealistic style transfer method based on U-Net and
multi-layer feature aggregation [0.0]
本稿では,フォトリアリスティックなイメージスタイリングの自然な効果を強調するために,フォトリアリスティックなスタイル転送ネットワークを提案する。
特に、高密度ブロックに基づくエンコーダとU-Netの対称構造を形成するデコーダとを連立して、効率的な特徴抽出と画像再構成を実現する。
論文 参考訳(メタデータ) (2021-08-13T08:06:29Z) - Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality
Artistic Style Transfer [115.13853805292679]
アートスタイルの転送は、サンプルイメージからコンテンツイメージへのスタイルの移行を目的としている。
図案作成と細部改訂の共通画法に触発されて,ラプラシアンピラミッドネットワーク(LapStyle)という新しいフィードフォワード方式を導入する。
本手法は, 定型的パターンを適切に伝達した高品質なスタイリズド画像をリアルタイムで合成する。
論文 参考訳(メタデータ) (2021-04-12T11:53:53Z) - Learning Portrait Style Representations [34.59633886057044]
高レベル特性を取り入れたニューラルネットワークアーキテクチャによって学習されたスタイル表現について検討する。
美術史家によって注釈付けされた三重奏曲をスタイル類似性の監督として取り入れることで,学習スタイルの特徴の変化を見いだす。
また,計算解析用に用意された肖像画の大規模データセットを初めて提示する。
論文 参考訳(メタデータ) (2020-12-08T01:36:45Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
本稿では,画像に条件付けされた関連レイヤを活用することで,動的に効率的な特徴を構成する視覚対応手法を提案する。
提案手法はダイナミックハイパーピクセルフロー(Dynamic Hyperpixel Flow)と呼ばれ,深層畳み込みニューラルネットワークから少数の関連層を選択することにより,高速にハイパーカラム機能を構成することを学習する。
論文 参考訳(メタデータ) (2020-07-21T04:03:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。