論文の概要: StyleBrush: Style Extraction and Transfer from a Single Image
- arxiv url: http://arxiv.org/abs/2408.09496v1
- Date: Sun, 18 Aug 2024 14:27:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 20:20:04.369850
- Title: StyleBrush: Style Extraction and Transfer from a Single Image
- Title(参考訳): StyleBrush: 単一画像からのスタイル抽出と転送
- Authors: Wancheng Feng, Wanquan Feng, Dawei Huang, Jiaming Pei, Guangliang Cheng, Lukun Wang,
- Abstract要約: ビジュアルコンテンツのスティル化は、オリジナルの構造的特徴を保ちながら、ピクセルレベルで特定のスタイルパターンを追加することを目的としている。
本稿では,参照画像からスタイルを正確にキャプチャし,抽出したスタイルを他の入力ビジュアルコンテンツにブラシするStyleBrushを提案する。
- 参考スコア(独自算出の注目度): 19.652575295703485
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stylization for visual content aims to add specific style patterns at the pixel level while preserving the original structural features. Compared with using predefined styles, stylization guided by reference style images is more challenging, where the main difficulty is to effectively separate style from structural elements. In this paper, we propose StyleBrush, a method that accurately captures styles from a reference image and ``brushes'' the extracted style onto other input visual content. Specifically, our architecture consists of two branches: ReferenceNet, which extracts style from the reference image, and Structure Guider, which extracts structural features from the input image, thus enabling image-guided stylization. We utilize LLM and T2I models to create a dataset comprising 100K high-quality style images, encompassing a diverse range of styles and contents with high aesthetic score. To construct training pairs, we crop different regions of the same training image. Experiments show that our approach achieves state-of-the-art results through both qualitative and quantitative analyses. We will release our code and dataset upon acceptance of the paper.
- Abstract(参考訳): ビジュアルコンテンツのスティル化は、オリジナルの構造的特徴を保ちながら、ピクセルレベルで特定のスタイルパターンを追加することを目的としている。
事前定義されたスタイルと比較して、参照スタイルの画像でガイドされるスタイル化はより困難であり、構造要素からスタイルを効果的に分離することが主な難しさである。
本稿では,参照画像からスタイルを正確にキャプチャする手法であるStyleBrushと,抽出したスタイルを他の入力ビジュアルコンテンツに'brushes'する手法を提案する。
具体的には、参照画像からスタイルを抽出するReferenceNetと、入力画像から構造的特徴を抽出するStructure Guiderの2つのブランチで構成されている。
LLM と T2I モデルを用いて,100K の高品質な画像からなるデータセットを作成する。
トレーニングペアを構築するために,同じトレーニングイメージの異なる領域を抽出する。
実験により, 定性解析と定量的解析の両面から, 最先端の結果が得られた。
論文の受理後、コードとデータセットを公開します。
関連論文リスト
- StyleForge: Enhancing Text-to-Image Synthesis for Any Artistic Styles with Dual Binding [7.291687946822539]
多様な芸術様式にまたがるパーソナライズされたテキスト・ツー・イメージ合成のための新しいアプローチであるSingle-StyleForgeを紹介した。
また、複数のトークンを部分的なスタイル属性に結合することで、画像の品質とテキストアライメントを向上させるMulti-StyleForgeを提案する。
論文 参考訳(メタデータ) (2024-04-08T07:43:23Z) - StyleCrafter: Enhancing Stylized Text-to-Video Generation with Style Adapter [78.75422651890776]
StyleCrafterは、トレーニング済みのT2Vモデルをスタイルコントロールアダプタで拡張する汎用的な方法である。
コンテンツスタイルのゆがみを促進するため,テキストプロンプトからスタイル記述を取り除き,参照画像のみからスタイル情報を抽出する。
StyleCrafterは、テキストの内容と一致し、参照画像のスタイルに似た高品質なスタイリングビデオを効率よく生成する。
論文 参考訳(メタデータ) (2023-12-01T03:53:21Z) - MOSAIC: Multi-Object Segmented Arbitrary Stylization Using CLIP [0.0]
テキストによって駆動されるスタイル転送は、実際のスタイルイメージを収集することなく、創造的に画像をスタイリングするための新しいパスを舗装した。
入力プロンプトから抽出したコンテキストに基づいて、画像内の異なるオブジェクトにスタイルを適用することができるCLIP(MOSAIC)を用いたマルチオブジェクト分割任意スティル化手法を提案する。
本手法は任意のオブジェクトやスタイルに拡張可能であり,最先端の手法と比較して高品質な画像を生成することができる。
論文 参考訳(メタデータ) (2023-09-24T18:24:55Z) - StyleAdapter: A Unified Stylized Image Generation Model [97.24936247688824]
StyleAdapterは、様々なスタイリング画像を生成することができる統一型スタイリング画像生成モデルである。
T2I-adapter や ControlNet のような既存の制御可能な合成手法と統合することができる。
論文 参考訳(メタデータ) (2023-09-04T19:16:46Z) - Visual Captioning at Will: Describing Images and Videos Guided by a Few
Stylized Sentences [49.66987347397398]
Few-Shot Stylized Visual Captioningは,任意のスタイルでキャプションを生成することを目的としている。
本稿では,条件付きエンコーダ-デコーダ言語モデルとビジュアルプロジェクションモジュールを用いたFS-StyleCapというフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-31T04:26:01Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStylerは、拡散された結果の内容とスタイルのバランスを制御するための二重拡散処理アーキテクチャである。
本稿では、逆復調処理をベースとしたコンテンツ画像に基づく学習可能なノイズを提案し、そのスタイリング結果により、コンテンツ画像の構造情報をよりよく保存する。
論文 参考訳(メタデータ) (2022-11-19T12:30:44Z) - Arbitrary Style Transfer with Structure Enhancement by Combining the
Global and Local Loss [51.309905690367835]
本稿では,グローバルな損失と局所的な損失を組み合わせ,構造拡張を伴う任意のスタイル転送手法を提案する。
実験結果から,視覚効果の優れた高画質画像が生成できることが示唆された。
論文 参考訳(メタデータ) (2022-07-23T07:02:57Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - StyleCLIPDraw: Coupling Content and Style in Text-to-Drawing Translation [10.357474047610172]
本稿では,ユーザが所望の描画スタイルを指定可能なテキスト記述のためのスタイルドローイング生成手法を提案する。
創作過程において、スタイルと内容が分離できないという芸術理論に触発されて、我々はStyleCLIPDrawとして知られる、結合したアプローチを提案する。
人間の評価に基づいて、StyleCLIPDrawによって生成される画像のスタイルは、シーケンシャルアプローチによって強く好まれる。
論文 参考訳(メタデータ) (2022-02-24T21:03:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。