論文の概要: Generating quantum feature maps for SVM classifier
- arxiv url: http://arxiv.org/abs/2207.11449v3
- Date: Sun, 25 Sep 2022 11:55:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-04 00:27:08.161428
- Title: Generating quantum feature maps for SVM classifier
- Title(参考訳): SVM分類器のための量子特徴写像の生成
- Authors: Bang-Shien Chen and Jann-Long Chern
- Abstract要約: 本稿では,量子化支援ベクトルマシンのための2つの量子特徴写像の生成法と比較を行った。
第1の方法は、分類の精度を最大化するペナルティ法を用いて、多目的フィットネス機能を持つ遺伝的アルゴリズムである。
第2の方法は変分量子回路を用い、ユニタリ行列分解に基づいてアンザッツをコントラクトする方法に焦点をあてる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present and compare two methods of generating quantum feature maps for
quantum-enhanced support vector machine, a classifier based on kernel method,
by which we can access high dimensional Hilbert space efficiently. The first
method is a genetic algorithm with multi-objective fitness function using
penalty method, which incorporates maximizing the accuracy of classification
and minimizing the gate cost of quantum feature map circuit. The second method
uses variational quantum circuit, focusing on how to contruct the ansatz based
on unitary matrix decomposition. Numerical results and comparisons are
presented to demonstrate how the fitness fuction reduces gate cost while
remaining high accuracy and conducting circuit through unitary matrix obtains
even better performance. In particular, we propose some thoughts on reducing
and optimizing the gate cost of a circuit while remaining perfect accuracy.
- Abstract(参考訳): 本稿では,高次元ヒルベルト空間に効率よくアクセスできるカーネル法に基づく分類器である量子化支援ベクトルマシンの量子特徴写像の生成法と比較を行う。
第1の方法は、分類の精度を最大化し、量子特徴写像回路のゲートコストを最小化するペナルティ法による多目的フィットネス機能を有する遺伝的アルゴリズムである。
第2の方法は変分量子回路を用い、ユニタリ行列分解に基づいてアンザッツをコントラクトする方法に焦点を当てる。
数値的な結果と比較を行い、精度を保ちながらゲートコストを低減し、ユニタリマトリクスを通した回路によりさらに優れた性能が得られることを示す。
特に,完全精度を維持しながら回路のゲートコストの低減と最適化について考察する。
関連論文リスト
- Efficient Quantum Circuits for Non-Unitary and Unitary Diagonal Operators with Space-Time-Accuracy trade-offs [1.0749601922718608]
ユニタリおよび非ユニタリ対角作用素は量子アルゴリズムの基本的な構成要素である。
本稿では,一元対角演算子と非単元対角演算子を効率よく調整可能な量子回路で実装する一般手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T15:42:25Z) - Quantum Circuit Optimization with AlphaTensor [47.9303833600197]
我々は,所定の回路を実装するために必要なTゲート数を最小化する手法であるAlphaTensor-Quantumを開発した。
Tカウント最適化の既存の方法とは異なり、AlphaTensor-Quantumは量子計算に関するドメイン固有の知識を取り入れ、ガジェットを活用することができる。
注目すべきは、有限体における乗法であるカラツバの手法に似た効率的なアルゴリズムを発見することである。
論文 参考訳(メタデータ) (2024-02-22T09:20:54Z) - GRAPE optimization for open quantum systems with time-dependent
decoherence rates driven by coherent and incoherent controls [77.34726150561087]
グラディエントアセンセントパルス工学(GRAPE)法は量子制御の最適化に広く用いられている。
我々は、コヒーレント制御と非コヒーレント制御の両方によって駆動されるオープン量子系の目的関数を最適化するために、GRAPE法を採用する。
状態-状態遷移問題に対する数値シミュレーションによりアルゴリズムの効率を実証する。
論文 参考訳(メタデータ) (2023-07-17T13:37:18Z) - Gradient-descent quantum process tomography by learning Kraus operators [63.69764116066747]
離散および連続変数の量子システムに対して量子プロセストモグラフィー(QPT)を行う。
我々は、クラウス作用素を得るために、最適化中にいわゆるスティーフェル多様体に対して制約付き勾配-退化(GD)アプローチを用いる。
GD-QPTは、2量子ランダムプロセスを持つベンチマークにおいて、圧縮センシング(CS)と投影最小二乗QPT(PLS)の両方のパフォーマンスと一致する。
論文 参考訳(メタデータ) (2022-08-01T12:48:48Z) - Gradient-Free optimization algorithm for single-qubit quantum classifier [0.3314882635954752]
量子デバイスによるバレンプラトーの影響を克服するために、勾配のない最適化アルゴリズムを提案する。
提案アルゴリズムは分類タスクに対して実証され,Adamを用いた手法と比較される。
提案アルゴリズムはAdamよりも高速に精度を向上できる。
論文 参考訳(メタデータ) (2022-05-10T08:45:03Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Automatic design of quantum feature maps [0.3867363075280543]
量子支援ベクトルマシン(QSVM)を用いた最適アドホックアンゼの自動生成手法を提案する。
この効率的な方法はNSGA-II多目的遺伝的アルゴリズムに基づいており、精度を最大化し、アンザッツサイズを最小化することができる。
論文 参考訳(メタデータ) (2021-05-26T15:31:10Z) - Quantum Gate Pattern Recognition and Circuit Optimization for Scientific
Applications [1.6329956884407544]
回路最適化のための2つのアイデアを導入し、AQCELと呼ばれる多層量子回路最適化プロトコルに組み合わせる。
AQCELは、高エネルギー物理学における最終状態の放射をモデル化するために設計された反復的で効率的な量子アルゴリズム上に展開される。
我々の手法は汎用的であり、様々な量子アルゴリズムに有用である。
論文 参考訳(メタデータ) (2021-02-19T16:20:31Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z) - MoG-VQE: Multiobjective genetic variational quantum eigensolver [0.0]
変分量子固有解法 (VQE) は、近距離量子コンピュータのための最初の実用的なアルゴリズムとして登場した。
本稿では,低深度と精度の向上を両立させる手法を提案する。
2ビットゲート数の10倍近く削減されるのを、標準のハードウェア効率のアンサッツと比較して観察する。
論文 参考訳(メタデータ) (2020-07-08T20:44:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。