論文の概要: Distributed Robust Principal Analysis
- arxiv url: http://arxiv.org/abs/2207.11669v1
- Date: Sun, 24 Jul 2022 05:45:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 15:53:18.450515
- Title: Distributed Robust Principal Analysis
- Title(参考訳): 分散ロバスト主成分分析
- Authors: Wenda Chu
- Abstract要約: 分散環境でのロバストな主成分分析問題について検討する。
DCF-PCAと呼ばれるコンセンサス因数分解に基づく最初の分散ロバストな主解析アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the robust principal component analysis (RPCA) problem in a
distributed setting. The goal of RPCA is to find an underlying low-rank
estimation for a raw data matrix when the data matrix is subject to the
corruption of gross sparse errors. Previous studies have developed RPCA
algorithms that provide stable solutions with fast convergence. However, these
algorithms are typically hard to scale and cannot be implemented distributedly,
due to the use of either SVD or large matrix multiplication. In this paper, we
propose the first distributed robust principal analysis algorithm based on
consensus factorization, dubbed DCF-PCA. We prove the convergence of DCF-PCA
and evaluate DCF-PCA on various problem setting
- Abstract(参考訳): 本研究では,分散環境でのロバストな主成分分析(RPCA)問題について検討する。
rpcaの目標は、データマトリックスが粗いスパースエラーの腐敗の対象となる場合、生のデータマトリックスの低ランク推定の基盤を見つけることである。
従来の研究では、高速収束で安定した解を提供するRPCAアルゴリズムが開発されている。
しかし、これらのアルゴリズムは通常拡張が困難であり、SVDまたは大きな行列乗算を使用するため、分散実装はできない。
本稿では,DCF-PCAと呼ばれるコンセンサス分解に基づく分散ロバストな主成分分析アルゴリズムを提案する。
我々は, DCF-PCAの収束性を証明し, 諸問題におけるDCF-PCAの評価を行う。
関連論文リスト
- Stability and Generalization of the Decentralized Stochastic Gradient
Descent Ascent Algorithm [80.94861441583275]
本稿では,分散勾配勾配(D-SGDA)アルゴリズムの一般化境界の複雑さについて検討する。
本研究は,D-SGDAの一般化における各因子の影響を解析した。
また、最適凸凹設定を得るために一般化とバランスをとる。
論文 参考訳(メタデータ) (2023-10-31T11:27:01Z) - Exploring the Algorithm-Dependent Generalization of AUPRC Optimization
with List Stability [107.65337427333064]
AUPRC(Area Under the Precision-Recall Curve)の最適化は、機械学習にとって重要な問題である。
本研究では, AUPRC最適化の単依存一般化における最初の試行について述べる。
3つの画像検索データセットの実験は、我々のフレームワークの有効性と健全性に言及する。
論文 参考訳(メタデータ) (2022-09-27T09:06:37Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Robust factored principal component analysis for matrix-valued outlier
accommodation and detection [4.228971753938522]
Factored PCA (FPCA) は行列データに対するPCAの確率的拡張である。
行列データに対するFPCA(RFPCA)の堅牢な拡張を提案する。
RFPCAは適応的に減量し、ロバストな推定値が得られる。
論文 参考訳(メタデータ) (2021-12-13T16:12:22Z) - FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component
Analysis [12.91948651812873]
主成分分析(PCA)は、機械学習の世界における基本的なデータ前処理ツールである。
本稿では,FAST-PCA (Fast and exact distributed PCA) と呼ばれる分散PCAアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-08-27T16:10:59Z) - Doubly Robust Off-Policy Actor-Critic: Convergence and Optimality [131.45028999325797]
ディスカウント型MDPのための2倍堅牢なオフポリチックAC(DR-Off-PAC)を開発した。
DR-Off-PACは、俳優と批評家の両方が一定のステップで同時に更新される単一のタイムスケール構造を採用しています。
有限時間収束速度を研究し, dr-off-pac のサンプル複雑性を特徴とし, $epsilon$-accurate optimal policy を得る。
論文 参考訳(メタデータ) (2021-02-23T18:56:13Z) - Federated Deep AUC Maximization for Heterogeneous Data with a Constant
Communication Complexity [77.78624443410216]
異種胸部データ検出のための改良型FDAMアルゴリズムを提案する。
本研究は,提案アルゴリズムの通信が機械数に強く依存し,精度レベルにも強く依存していることを示す。
FDAMアルゴリズムのベンチマークデータセットと、異なる組織の医療用胸部X線画像に対する効果を実験により実証した。
論文 参考訳(メタデータ) (2021-02-09T04:05:19Z) - A Linearly Convergent Algorithm for Distributed Principal Component
Analysis [12.91948651812873]
本稿では,1時間スケール分散pcaアルゴリズムである分散sanger's algorithm(dsa)を提案する。
提案アルゴリズムは真の解の近傍に線形収束することを示した。
論文 参考訳(メタデータ) (2021-01-05T00:51:14Z) - Exact and Approximation Algorithms for Sparse PCA [1.7640556247739623]
本稿では,MISDP(MISDP)とMISDP(MISDP)について述べる。
次に、それらの連続緩和値の理論的最適性ギャップを分析し、それらが最先端の値よりも強いことを証明する。
市販の解法は一般にMISDPを解くのが難しいため,MISDPと同等の大きさのMILP(mixed-integer linear program)を用いてSPCAを任意の精度で近似する。
論文 参考訳(メタデータ) (2020-08-28T02:07:08Z) - Approximation Algorithms for Sparse Principal Component Analysis [57.5357874512594]
主成分分析(PCA)は、機械学習と統計学において広く使われている次元削減手法である。
スパース主成分分析(Sparse principal Component Analysis)と呼ばれる,スパース主成分負荷を求める様々な手法が提案されている。
本研究では,SPCA問題に対するしきい値の精度,時間,近似アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-23T04:25:36Z) - One-shot Distibuted Algorithm for PCA with RBF Kernels [23.266613551011638]
提案アルゴリズムは,サンプル分散シナリオと特徴分散シナリオの二重関係に着想を得たものである。
理論的には,線形カーネルとRBFカーネルの近似誤差を解析する。
提案アルゴリズムは,固有値が高速に減衰すると,通信コストの低い高品質な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-05-06T09:07:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。