論文の概要: A Cognitive Study on Semantic Similarity Analysis of Large Corpora: A
Transformer-based Approach
- arxiv url: http://arxiv.org/abs/2207.11716v1
- Date: Sun, 24 Jul 2022 11:06:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-26 13:08:03.753086
- Title: A Cognitive Study on Semantic Similarity Analysis of Large Corpora: A
Transformer-based Approach
- Title(参考訳): 大規模コーパスの意味的類似性分析に関する認知的研究:トランスフォーマーによるアプローチ
- Authors: Praneeth Nemani, Satyanarayana Vollala
- Abstract要約: 我々は,従来の技術とトランスフォーマー技術の両方を用いて,米国特許法とPhrase Matchingデータセットのセマンティック類似性解析とモデリングを行う。
実験の結果,従来の手法と比較して手法の性能が向上し,平均ピアソン相関スコアは0.79。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Semantic similarity analysis and modeling is a fundamentally acclaimed task
in many pioneering applications of natural language processing today. Owing to
the sensation of sequential pattern recognition, many neural networks like RNNs
and LSTMs have achieved satisfactory results in semantic similarity modeling.
However, these solutions are considered inefficient due to their inability to
process information in a non-sequential manner, thus leading to the improper
extraction of context. Transformers function as the state-of-the-art
architecture due to their advantages like non-sequential data processing and
self-attention. In this paper, we perform semantic similarity analysis and
modeling on the U.S Patent Phrase to Phrase Matching Dataset using both
traditional and transformer-based techniques. We experiment upon four different
variants of the Decoding Enhanced BERT - DeBERTa and enhance its performance by
performing K-Fold Cross-Validation. The experimental results demonstrate our
methodology's enhanced performance compared to traditional techniques, with an
average Pearson correlation score of 0.79.
- Abstract(参考訳): 意味的類似性分析とモデリングは、今日の多くの自然言語処理の先駆的応用において、基本的に賞賛されているタスクである。
シーケンシャルパターン認識の感覚により、RNNやLSTMのような多くのニューラルネットワークはセマンティック類似性モデリングにおいて満足な結果を得た。
しかし、これらの解は、非系列的な方法で情報を処理できないため、不適切なコンテキスト抽出につながるため、非効率であると考えられている。
トランスフォーマーは、非逐次データ処理や自己アテンションといった長所があるため、最先端アーキテクチャとして機能する。
本稿では,従来の手法とトランスフォーマー方式の両方を用いて,米国特許用語のPhrase Matching Datasetに対する意味的類似性解析とモデリングを行う。
提案手法は,4種類の復号化BERT-DeBERTaを試作し,K-Foldクロスバリデーションにより性能を向上する。
実験の結果,従来の手法と比較して手法の性能が向上し,平均ピアソン相関スコアは0.79。
関連論文リスト
- Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
我々は、意味的テキスト類似性のためのトピックインフォームド離散潜在変数モデルを開発した。
我々のモデルはベクトル量子化による文対表現のための共有潜在空間を学習する。
我々のモデルは意味的テキスト類似性タスクにおいて、いくつかの強力な神経ベースラインを超えることができることを示す。
論文 参考訳(メタデータ) (2022-11-07T15:09:58Z) - Impact of PolSAR pre-processing and balancing methods on complex-valued
neural networks segmentation tasks [9.6556424340252]
複素値ニューラルネットワーク(CVNN)を用いたポラリメトリック合成開口レーダ(PolSAR)のセマンティックセグメンテーションについて検討する。
6つのモデルアーキテクチャ,3つの複素値,それぞれの実等価モデルについて,両手法を徹底的に比較する。
本稿では、このギャップを減らし、全ての入力表現、モデル、データセット前処理の結果を実行するための2つの方法を提案する。
論文 参考訳(メタデータ) (2022-10-28T12:49:43Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
カラムワイズモデルを適応的かつ自動的に構成するための一般化反復計算フレームワークを提案する。
既製の学習者,シミュレータ,インターフェースを備えた具体的な実装を提供する。
論文 参考訳(メタデータ) (2022-06-15T19:10:35Z) - BayesFormer: Transformer with Uncertainty Estimation [31.206243748162553]
ベイズ理論によって設計されたドロップアウトを持つトランスフォーマーモデルBayesFormerを紹介する。
我々は,言語モデリングと分類,長文理解,機械翻訳,能動的学習のための獲得機能など,ボード全体の改良点を示す。
論文 参考訳(メタデータ) (2022-06-02T01:54:58Z) - Semantic Correspondence with Transformers [68.37049687360705]
本稿では,変換器を用いたコストアグリゲーション(CAT)を提案し,意味論的に類似した画像間の密接な対応を見出す。
初期相関マップと多レベルアグリゲーションを曖昧にするための外観親和性モデリングを含む。
提案手法の有効性を示す実験を行い,広範囲にわたるアブレーション研究を行った。
論文 参考訳(メタデータ) (2021-06-04T14:39:03Z) - A comprehensive comparative evaluation and analysis of Distributional
Semantic Models [61.41800660636555]
我々は、静的DSMによって生成されたり、BERTによって生成された文脈化されたベクトルを平均化して得られるような、型分布ベクトルの包括的評価を行う。
その結果、予測ベースモデルの優越性は現実よりも明らかであり、ユビキタスではないことが明らかとなった。
我々は認知神経科学からRepresentational similarity Analysis(RSA)の方法論を借りて、分布モデルによって生成された意味空間を検査する。
論文 参考訳(メタデータ) (2021-05-20T15:18:06Z) - Exploring Complementary Strengths of Invariant and Equivariant
Representations for Few-Shot Learning [96.75889543560497]
多くの現実世界では、多数のラベル付きサンプルの収集は不可能です。
少ないショット学習はこの問題に対処するための主要なアプローチであり、目的は限られた数のサンプルの存在下で新しいカテゴリに迅速に適応することです。
幾何学的変換の一般集合に対する等分散と不変性を同時に強制する新しい訓練機構を提案する。
論文 参考訳(メタデータ) (2021-03-01T21:14:33Z) - Enriching Non-Autoregressive Transformer with Syntactic and
SemanticStructures for Neural Machine Translation [54.864148836486166]
本稿では,言語の明示的な構文構造と意味構造を非自己回帰トランスフォーマーに組み込むことを提案する。
我々のモデルは、最先端の非自己回帰モデルと比較して翻訳品質を保ちながら、はるかに高速な速度を実現している。
論文 参考訳(メタデータ) (2021-01-22T04:12:17Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - A Variational Infinite Mixture for Probabilistic Inverse Dynamics
Learning [34.90240171916858]
確率的局所モデルの無限混合に対する効率的な変分ベイズ推論手法を開発した。
我々は、データ駆動適応、高速予測、不連続関数とヘテロセダスティックノイズに対処する能力の組み合わせにおけるモデルのパワーを強調した。
学習したモデルを用いてBarrett-WAMマニピュレータのオンライン動的制御を行い、軌道追跡性能を大幅に改善した。
論文 参考訳(メタデータ) (2020-11-10T16:15:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。